Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.4.461

Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory  

Messai, Abderraouf (Department of Civil Engineering, University Ferhat Abbas SETIF 1)
Fortas, Lahcene (MN2I2S Laboratory, Faculty of Science and Technology, Biskra University)
Merzouki, Tarek (LISV, University of Versailles Saint-Quentin)
Houari, Mohammed Sid Ahmed (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, University Mustapha Stambouli of Mascara)
Publication Information
Structural Engineering and Mechanics / v.81, no.4, 2022 , pp. 461-479 More about this Journal
Abstract
A finite element method analysis framework is introduced for the free vibration analyses of functionally graded porous beam structures by employing two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element. A comprehensive parametric study is carried out, with a particular focus on the effects of various structural parameters such as the dispersion patterns of GPL reinforcements and porosity, thickness ratio, boundary conditions, nonlocal scale parameter and strain gradient parameters. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams.
Keywords
finite element method; free vibration; functionally graded porous materials; nonlocal strain gradient theory; variational formulation;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.   DOI
2 Roberts, A.P. and Garboczi, E J. (2001), "Elastic moduli of model random three-dimensional closed-cell cellular solids", Acta Materialia, 49(2), 189-197. https://doi.org/10.1016/S1359-6454(00)00314-1.   DOI
3 Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
4 Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solid. Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.   DOI
5 Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D.E. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solid. Struct., 40(2), 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X.   DOI
6 Fan, F., Safaei, B. and Sahmani, S. (2021), "Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis", Thin Wall. Struct., 159, 107231. https://doi.org/10.1016/j.tws.2020.107231.   DOI
7 Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.   DOI
8 Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.   DOI
9 Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.   DOI
10 Wang, Y., Xie, K., Fu, T. and Zhang, W. (2021), "A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01238-x.   DOI
11 Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.   DOI
12 Banhart, J. (2001), "Manufacture, characterisation and application of cellular metals and metal foams", Prog. Mater. Sci., 46(6), 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5.   DOI
13 Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175   DOI
14 Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.   DOI
15 Zenkour, A.M. and Radwan, A.F. (2020), "A nonlocal strain gradient theory for porous functionally graded curved nanobeams under different boundary conditions", Физическая мезомеханика, 23(3), 77-92. https://doi.org/10.24411/1683-805X-2020-13008.   DOI
16 Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.   DOI
17 Ansari, R., Rouhi, H. and Sahmani, S. (2011), "Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics", Int. J. Mech. Sci., 53(9), 786-792. https://doi.org/10.1016/j.ijmecsci.2011.06.010.   DOI
18 Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygrothermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.   DOI
19 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
20 Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721.   DOI
21 Civalek, O ., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.   DOI
22 Demir, C . and Civalek, O . (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.   DOI
23 Liu, F., Ming, P. and Li, J. (2007), "Ab initio calculation of ideal strength and phonon instability of graphene under tension", Phys. Rev. B, 76(6), 064120. https://doi.org/10.1103/PhysRevB.76.064120.   DOI
24 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
25 Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low Dimens. Syst. Nanostr., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.   DOI
26 Lim, C.W., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.   DOI
27 Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.   DOI
28 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
29 Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.   DOI
30 Elmeiche, N., Abbad, H., Mechab, I. and Bernard, F. (2020), "Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory", Struct. Eng. Mech., 75(6), 737-746. https://doi.org/10.12989/sem.2020.75.6.737.   DOI
31 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
32 Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
33 Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.   DOI
34 Hangai, Y., Takahashi, K., Utsunomiya, T., Kitahara, S., Kuwazuru, O. and Yoshikawa, N. (2012), "Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing", Mater. Sci. Eng.: A, 534, 716-719. https://doi.org/10.1016/j.msea.2011.11.100.   DOI
35 Hassani, A., Habibolahzadeh, A. and Bafti, H. (2012), "Production of graded aluminum foams via powder space holder technique", Mater. Des., 40, 510-515. https://doi.org/10.1016/j.matdes.2012.04.024.   DOI
36 He, S.Y., Zhang, Y., Dai, G. and Jiang, J.Q. (2014), "Preparation of density-graded aluminum foam", Mater. Sci. Eng.: A, 618, 496-499. https://doi.org/10.1016/j.msea.2014.08.087.   DOI
37 Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.   DOI
38 Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.   DOI
39 Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B, 69(23), 235406. https://doi.org/10.1103/PhysRevB.69.235406.   DOI
40 Setoodeh, A. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.   DOI
41 She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 1-9. https://doi.org/10.1140/epjp/i2018-12196-5.   DOI
42 Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. https://doi.org/10.1063/1.1625437.   DOI
43 Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.   DOI
44 Merzouki, T., Houari, M.S.A., Haboussi, M., Bessaim, A. and Ganapathi, M. (2020), "Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-020-01156-y.   DOI
45 Mindlin, R.D. (1963), "Microstructure in linear elasticity", Dept. of Civil Engineering and Engineering Mechanics, Columbia Univ. New York, USA.
46 Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., ... & Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.   DOI
47 Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19), 195412. https://doi.org/10.1103/PhysRevB.71.195412.   DOI
48 Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 075702.   DOI
49 Affdl, J.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.   DOI
50 Agrawal, R., Peng, B., Gdoutos, E.E. and Espinosa, H.D. (2008), "Elasticity size effects in ZnO nanowires-A combined experimental-computational approach", Nano Lett., 8(11), 3668-3674. https://doi.org/10.1021/nl801724b.   DOI
51 Aifantis, K.E. and Willis, J.R. (2005), "The role of interfaces in enhancing the yield strength of composites and polycrystals", J. Mech. Phys. Solid., 53(5), 1047-1070. https://doi.org/10.1016/j.jmps.2004.12.003.   DOI
52 Akgoz, B. and Civalek, O. (2015), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003.   DOI
53 Alam, M. and Mishra, S.K. (2021), "Nonlinear vibration of nonlocal strain gradient functionally graded beam on nonlinear compliant substrate", Compos. Struct., 263, 113447. https://doi.org/10.1016/j.compstruct.2020.113447.   DOI
54 Alam, M., Mishra, S.K. and Kant, T. (2021), "Scale dependent critical external pressure for buckling of spherical shell based on nonlocal strain gradient theory", Int. J. Struct. Stab. Dyn., 21(01), 2150003. https://doi.org/10.1142/S0219455421500036.   DOI
55 Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B: Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.   DOI
56 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B: Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.   DOI
57 Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.   DOI
58 Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.   DOI
59 Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded EulerBernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.   DOI
60 Pollien, A., Conde, Y., Pambaguian, L. and Mortensen, A. (2005), "Graded open-cell aluminium foam core sandwich beams", Mater. Sci. Eng.: A, 404(1-2), 9-18. https://doi.org/10.1016/j.msea.2005.05.096.   DOI
61 Qin, J., Chen, Q., Yang, C. and Huang, Y. (2016), "Research process on property and application of metal porous materials", J. Alloy. Compound., 654, 39-44. https://doi.org/10.1016/j.jallcom.2015.09.148.   DOI
62 Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.   DOI