• Title/Summary/Keyword: Structural strain method

Search Result 879, Processing Time 0.028 seconds

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

Test and evaluation of a large scale composite rotor blade for wind turbine (풍력발전용 대형 복합재 회전날개의 구조시험 및 평가에 관한 연구)

  • ;;;Y. Sugiyama
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.91-94
    • /
    • 2001
  • A structural test of the wind turbine rotor blade must be required to evaluate the uncertainty in design assessment due to use of material, design concepts, production processes and so on, and the possible impact on the structural integrity. In the full-scale static strength test, the measuring parameters are strain, displacements, loads, weight and the center of gravity. There are test equipments, measuring sensors, a test rig and fixtures to obtain measuring parameters. In order to simulate the aerodynamics load, the three-point loading method instead of the one-point loading method is applied. There is slightly some difference between the measured results and the predicted results with the reference fiber volume fraction of 60%. However, the agreement between the measured results and the predicted results with the actual fiber volume fraction of 52.5% is good. Even though a slightly non-linearity from 80% loading to 100% loading, a linear static solution is sufficient for the design purpose as the amount of the non-linearity is relatively small. Comparison between measured and predicted strain results at the maximum thickness positions of the blade profile for 0.236R(5.56m), 0.493R(11.59m) and 0.574R(13.43m), under 20%, 40%, 60%, 80% and 100% loadings for the upper part of the blade. The predicted values are in good agreement with the measured values.

  • PDF

Damage detection on output-only monitoring of dynamic curvature in composite decks

  • Domaneschi, M.;Sigurdardottir, D.;Glisic, B.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Installation of sensors networks for continuous in-service monitoring of structures and their efficiency conditions is a current research trend of paramount interest. On-line monitoring systems could be strategically useful for road infrastructures, which are expected to perform efficiently and be self-diagnostic, also in emergency scenarios. This work researches damage detection in composite concrete-steel structures that are typical for highway overpasses and bridges. The techniques herein proposed assume that typical damage in the deck occurs in form of delamination and cracking, and that it affects the peak power spectral density of dynamic curvature. The investigation is performed by combining results of measurements collected by long-gauge fiber optic strain sensors installed on monitored structure and a statistic approach. A finite element model has been also prepared and validated for deepening peculiar aspects of the investigation and the availability of the method. The proposed method for real time applications is able to detect a documented unusual behavior (e.g., damage or deterioration) through long-gauge fiber optic strain sensors measurements and a probabilistic study of the dynamic curvature power spectral density.

Solids 3-D with bounded tensile strength under the action of thermal strains. Theoretical aspects and numerical procedures

  • Pimpinelli, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.59-78
    • /
    • 2004
  • This paper is devoted to illustrate some numerical procedures to solve the boundary equilibrium problems of three-dimensional solids that are subjected to thermal strains. The constitutive equations take into account the bounded tensile strength of the material and they are presented in the framework of non-linear elasticity and small strains. The associated equilibrium problem is solved numerically by means of the finite element method and the numerical techniques, i.e. the Newton-Raphson method and the secant method, are revised in order to assure the solution convergence of the discretized problem. Some numerical examples are illustrated.

Evaluation of Material Properties Variations of Cementitious Composites under High Strain Rate by SHPB Test and Image Analysis (SHPB 시험 및 영상분석을 통한 고변형율 속도 하의 시멘트 복합체 물성 변화 평가)

  • Cho, Hyun-Woo;Lee, Jang-Hwa;Min, Ji-Young;Park, Jung-Jun;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.83-91
    • /
    • 2015
  • Under impact or blast loads, concrete behaves with different mechanical properties comparing to the static loading conditions. In other words, with high strain rate, mechanical properties of concrete vary significantly. To evaluate the compressive characteristics of concrete with high strain rate, SHPB(Split Hopkinson Pressure Bar) test is typically used. However, because SHPB test method has been developed for metallic materials, it is necessary to verify the applicability of SHPB for brittle materials such as concrete. Also, there have been little researches on the evaluations of mechanical characteristics of UHPC under high strain rate conditions. This study has been performed to evaluate and analyse the compressive characteristics of plain concrete and UHPC with SHPB test apparatus. Also, to verify the applicability of SHPB test for concrete, direct displacement image analysis with high speed camera was performed for the comparisons with analytical solutions for SHPB test.

Nonlinear Finite Element Analysis of RC Shear Walls under Cyclic Loadings (반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.353-367
    • /
    • 2003
  • This paper describes the extension of the numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subjected to monotonic in plane shear and introduced in the companion paper, to simulate effectively the behavior of RE structures under cyclic loadings. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress strain relation of concrete, which across the tension compression region, is defined. In addition, unlike previous simplified stress strain relations, curved unloading and reloading branches inferred from the stress strain relation of steel considering the Bauschinger effect we used. The modifications of the stress strain relation of steel are also introduced to reflect pinching effect depending on the shear span ratio and an average stress distribution in a cracked RC element. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF