Nonlinear Finite Element Analysis of RC Shear Walls under Cyclic Loadings

반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석

  • 곽효경 (한국과학기술원 건설및환경공학과) ;
  • 김도연 (한국과학기술원 건설및환경공학과)
  • Published : 2003.12.01

Abstract

This paper describes the extension of the numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subjected to monotonic in plane shear and introduced in the companion paper, to simulate effectively the behavior of RE structures under cyclic loadings. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress strain relation of concrete, which across the tension compression region, is defined. In addition, unlike previous simplified stress strain relations, curved unloading and reloading branches inferred from the stress strain relation of steel considering the Bauschinger effect we used. The modifications of the stress strain relation of steel are also introduced to reflect pinching effect depending on the shear span ratio and an average stress distribution in a cracked RC element. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

이 논문에서는 단조증가하중 하에서 철근콘크리트 전단벽의 수치해석을 위해 개발된 재료모델을 반복하중을 포함한 일반적인 하중 하에서의 구조 거동을 효과적으로 모사하기 위한 해석모델로 확장하여 제안하고 있다. 먼저 재료모델을 구성함에 있어 하중이력에 따라 인장과 압축이 교대로 작용하는 콘크리트는 기본적으로 회전균열모델을 따르는 직교이방성 재료로써 가정하였고, 직교하는 축에 대해 인장과 압축을 오가는 이력곡선을 중심으로 등가의 일축응력-변형률 관계를 정의하였다. 나아가 철근은 평균응력-변형률 개념을 통해 단조증가 상태의 응력-변형률 관계를 구성하였고, 역전된 반복하중으로 인해 발생하는 Bausc-hinger 효과를 고려하여 이력곡선을 정의하였으며, 전단 효과를 고려하기 위해 전단지간 비에 따라 기존에 제안된 이력곡선을 수정하였다. 특히 해석과정의 효율성을 도모하고 변형연화 거동특성 등 일반적인 하중-변위 평형경로를 갖는 철근콘크리트 구조물의 비선형 해석을 위해 arc-length 기법을 도입하였다. 또한 제안된 수치해석모델에 대한 효율성을 검증하기 위해 요소단위의 철근콘크리트 판넬 시험체와 대표적인 전단벽 시험체의 반복하중 이력에 따른 하중-변위 관계 등 전단에 의해 지배를 받는 구조체에 대한 해석 결과와의 비교가 이루어졌다.

Keywords

References

  1. ACI Committee 318, Building Code Requirements for Reinforced Concrete, ACI 318-99, American Concrete Institute, Detroit, 1999
  2. ASCE Task Committee on Finite Element Analysis of Reinforced Concrete Structures, State- of-the-Art Report on Finite Element Analysis of Reinforced Concrete, ASCE, New York, 1982
  3. Belarbi, A., and Hsu, T. T. C., 'Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete', ACI Structural Journal, Vol.91, No.4, Jul.-Aug. 1994, pp.465-474
  4. Cervenka, V., and Gerstle, K. H., 'Inelastic Analysis of Reinforced Concrete Panels, Part II: Experimental Verification and Application', Proceedings of International Association for Bridge and Structural Engineering, Vol.32-II, 1972, pp.25-39
  5. Collins, M. P., and Porasz, A., 'Shear Strength for High Strength Concrete', Bulletin No.193- Design Aspects of High Strength Concrete, Comité Euro‐International du Béton (CEB), pp. 75-83
  6. Comité Euro-International du Béton, CEB-FIP Model Code 1990, Thomas Telford Service Ltd., London, 1993
  7. Comité Euro‐International du Béton, RC Elements under Cyclic Loading, State of the Art Report, Thomas Telford Services Ltd., London, 1996, p.190
  8. Comité Euro‐International du Béton, RC Fra- mes under Earthquake Loading, State of the Art Report, Thomas Telford Services Ltd., London, 1996, p.303
  9. Crisfield, M. A., Non‐linear Finite Element Analysis of Solids and Structures, Volume 1: Essentials, John Wiley & Sons, Chichester, 1991, p.345
  10. Crisfield, M. A., and Wills, J., 'Analysis of R/C Panels Using Different Concrete Models', Journal of Engineering Mechanics, ASCE, Vol. 115, No.3, Mar. 1989, pp.578-597 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(578)
  11. Darwin, D., and Pecknold, D. A., 'Analysis of RC Shear Panels under Cyclic Loading', Journal of the Structural Division, ASCE, Vol. 102, No. ST2, Feb. 1976, pp.355-369
  12. Elmorsi, M., Kianoush, M. R., and Tso, W. K., 'Nonlinear Analysis of Cyclically Loaded Reinforced Concrete Structures', ACI Structural Journal, Vol.95, No.6, Nov.-Dec. 1998, pp.725-739
  13. Filippou, F. C., Popov, E. P., and Bertero, V. V., 'Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints', Earthquake Engineering Research Center, Report No. EERC 83-19, University of California, Berkeley
  14. Foster, S., 'An Application of the Arc Length Method Involving Concrete Cracking', International Journal for Numerical Methods in Engineering, Vol.33, No.2, 1992, pp.269-285
  15. Karsan, I. D., and Jirsa, J. O., 'Behavior of Concrete under Compressive Loading', Journal of the Structural Division, ASCE, Vol.95, No. ST12, Dec. 1969, pp.2543-2563
  16. Kosovos, M. D., and Pavlovic, M. N., Structural Concrete, Thomas Telford Service Ltd., London, 1995
  17. upfer, H. B., and Gerstle, K. H., 'Behavior of Concrete under Biaxial Stresses,' Journal of the Engineering Mechanics Division, ASCE, Vol.99, No. EM4, Aug. 1973, pp.852-866
  18. Kwak, H. G., and Kim, D. Y., 'Nonlinear Analysis of RC Shear Walls Considering Tension -Stiffening Effect', Computers & Structures, Vol.79, Issue. 5, 2001, pp.499-517 https://doi.org/10.1016/S0045-7949(00)00157-7
  19. Ma, S. M., Bertero, V. V., and Popov, E. P., 'Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and T‐Beams', Earthquake Engineering Research Center, Report No. EERC 76-2, Univ. of California, Berkeley, 1976
  20. Mansour, M., Lee, J. Y., and Hsu, T. T. C., 'Cyclic Stress‐Strain Curves of Concrete and Steel Bars in Membrane Elements', Journal of Structural Engineering, ASCE, Vol.127, No.12, Dec. 2001, pp.1402-1411 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1402)
  21. Menegotto, M., and Pinto P. E., 'Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Nonelastic Behavior of Elements under Combined Normal Force and Bending', Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon, Spain, 1973
  22. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, J. E., Russell, H. G., and Corley, W. G., 'Earthquake Resistance Structural Walls -Tests of Isolated Walls', Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, Ill., Oct. 1976, p.315
  23. Penelis, G. G., and Kappos, A. J., Earthquake -Resistant Concrete Structures, E & FN SPON, London, 1997
  24. Roufaiel, M. S. L., and Meyer, C., 'Analytical Modeling of Hysteretic Behavior of R/C Frames', Journal of Structural Engineering, ASCE Vol.113, No.3, Mar. 1987, pp.429-444 https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(429)
  25. Salonikios, T. N., Kappos, A. J., Tegos, I. A., and Penelis, G. G., 'Cyclic Load Behavior of Low‐Slenderness Reinforced Concrete Walls: Design Basis and Test Results', ACI Structural Journal, Vol.96, No.4, Jul.-Aug. 1999, pp.649-660
  26. Sittipunt, C., and Wood, S. L., 'Influence of Web Reinforcement on the Cyclic Response of Structural Walls', ACI Structural Journal, Vol.92, No.6, Nov.-Dec. 1995, pp.745-756
  27. Stevens, N. J., Uzumeri, S. M., and Collins, M. P., 'Reinforced Concrete Subjected to Reversed Cyclic Shear‐Experiments and Constitutive Model', ACI Structural Journal, Vol. 88, No.2, Mar.-Apr. 1991, pp.135-146
  28. Stevens, N. J., Uzumeri, S. M., Collins, M. P., and Will G. T., 'Constitutive Model for Reinforced Concrete Finite Element Analysis', ACI Structural Journal, Vol.88, No.1, Jan.-Feb. 1991, pp.49-59
  29. Thorenfeldt, E., Tomaszewicz, A., and Jensen, J. J., 'Mechanical Properties of High- Strength Concrete and Application in Design', Proceedings of Symposium on Utilization of High-Strength Concrete”, Stavanger, Norway, Jun. 1987, pp.149-159
  30. Vecchio, F. J., 'Towards Cyclic Load Modeling of Reinforced Concrete', ACI Structural Journal, Vol.96, No.2, Mar.-Apr. 1999, pp.193-202
  31. Vecchio, F. J., and Collins, M. P., 'Compression Response of Cracked Reinforced Concrete', Journal of Structural Engineering, ASCE, Vol.119, No.12, Dec. 1993, pp.3590-3610 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)