• Title/Summary/Keyword: Structural property

Search Result 1,367, Processing Time 0.026 seconds

Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates (구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구)

  • 장동일;채원규;조광현;김광일;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

Structural Characteristics of Pultruded Glass Fiber Reinforced Composite Strip (풀투루젼으로 제조한 유리섬유강화 복합소재를 스트립의 구조적 특성)

  • 이성우;신경재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.11-18
    • /
    • 1999
  • Recently advanced countries are now beginning to use ACM (Advanced Composites Material), which is mostly used in the industry of airplane, ship building and sports equipments, in the construction industry. Compared with existing construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant property. Among other manufacturing process of ACM, pultrusion is one of the promising one of civil engineering application. In this paper, the structural characteristics of pultruded GFRP strip were studied. Major parameters to influence structural behavior of pultruded GFRP are considered to be fiber volume fraction, die temperature, pulling speed and fiber orientations. The effect of these parameters are studied by experimently and analytically. From this study, it is concluded that fiber volume fraction and fiber orientations influence more on the mechanical property of pultruded GFRP. In addition to above parametric study, off-axis tests were carried out and the results are compared with failure theories. It showed that they agree well each other. Since this study is carried out in limited scope, further research on the reinforcement in the transverse direction, experiment on the compressive strength and research on the durability should be conducted for wide application of pultruded GFRP sections.

  • PDF

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

Analytical Study to Determine the Dynamic Property of Control Equipment Room using LRB (납-고무베어링을 적용한 제어장치의 동적평가를 위한 해석적 연구)

  • 김우범;김대곤;이경진;박병구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.473-480
    • /
    • 2003
  • In these days, The base isolation system is often used improve the seismic capacity of the structure Instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using Lead Rubber Bearing. In this study, analysis numerical was performed to determine the optimal dynamic property of lead rubber bearing and damper which minimize the response of base from in main control room. Also the analytical results was composed with the test results peformed in previous study

  • PDF

A Study on the Physical Property by Construction Condition of Urethane Waterproofing Membrane (우레탄 도막방수재의 시공조건에 따른 물성변화)

  • Kim, Young-Sam;Han, Cheon-Goo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.138-144
    • /
    • 2013
  • This study is for quality standard establishment of urethane waterproofing membrane method which is mostly applied to waterproofing method for underground parking lot and rooftop. The experiments were carried out on color differences, membrane thickness, tensile property by curing period of liquid urethane before placing protective concrete, and resistance of crack movement according to different substrate surface and reinforcement of non-woven fabric. As a result of experiments, it was found that color differences is increase, membrane thickness is thick, tensile property is low as concrete placing period is shorter. In the fatigue property, membrane thickness of 3 mm was not broken, but 1~2 mm was broken and in the case of the membrane reinforced with non-woven fabric was more stable comparatively non-reinforcement one.

Structural Bioinformatics Analysis of Disease-related Mutations

  • Park, Seong-Jin;Oh, Sang-Ho;Park, Dae-Ui;Bhak, Jong
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.142-146
    • /
    • 2008
  • In order to understand the protein functions that are related to disease, it is important to detect the correlation between amino acid mutations and disease. Many mutation studies about disease-related proteins have been carried out through molecular biology techniques, such as vector design, protein engineering, and protein crystallization. However, experimental protein mutation studies are time-consuming, be it in vivo or in vitro. We therefore performed a bioinformatic analysis of known disease-related mutations and their protein structure changes in order to analyze the correlation between mutation and disease. For this study, we selected 111 diseases that were related to 175 proteins from the PDB database and 710 mutations that were found in the protein structures. The mutations were acquired from the Human Gene Mutation Database (HGMD). We selected point mutations, excluding only insertions or deletions, for detecting structural changes. To detect a structural change by mutation, we analyzed not only the structural properties (distance of pocket and mutation, pocket size, surface size, and stability), but also the physico-chemical properties (weight, instability, isoelectric point (IEP), and GRAVY score) for the 710 mutations. We detected that the distance between the pocket and disease-related mutation lay within $20\;{\AA}$ (98.5%, 700 proteins). We found that there was no significant correlation between structural stability and disease-causing mutations or between hydrophobicity changes and critical mutations. For large-scale mutational analysis of disease-causing mutations, our bioinformatics approach, using 710 structural mutations, called "Structural Mutatomics," can help researchers to detect disease-specific mutations and to understand the biological functions of disease-related proteins.

An Empirical Study of Social Capital and Performance of Intellectual Property (사회적자본과 지식재산 성과에 관한 실증적 연구)

  • Park, Hoin;Lee, Jongmoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.123-134
    • /
    • 2016
  • Social capitals are getting more important for management in enterprises, especially in small and medium sized enterprises(SMEs). The purpose of this study is to examine the effect of social capitals on the performance of intellectual property. For the empirical analysis, survey data were collected from 138 companies in one industry cluster, 34 companies in the other one. The data were compared using regression analysis. The findings confirm a positive influence of the conceptive social capital on the performance of intellectual property while there are no effect of structural and relational social capitals on the performance. These are different from the past researches. In addition, there is no difference between industrial types such as IT, BT, and NT in terms of the effect of social capitals on the performance of intellectual property. Also there is no difference between the two industry clusters.

The Suitability Assessment of Performance Standards on Landscaping Rocks of GRS(Glass Fiber Reinforced Slag) Panels (유리섬유강화슬래그(Glass-fiber Reinforced Slag)의 경관석 성능 적합성 평가)

  • Yoon, Bok-Mo;Lee, Yong-Bok;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.127-135
    • /
    • 2013
  • This study was carried out to verify the suitability of GRS(Glass-fiber Reinforced Slag) as natural type landscape stone according to the material property and structural safety performance standards. The structural safety performance of the GRS panel showed 12.4MPa and 16.2MPa each in flexural strength at 2 and 3% content of glass fiber while the flexural strength at 4 and 5% of glass fiber content showed 26.9MPa, and 30.2MPa, respectively, all satisfying the standards. In addition, air-dried gravity was found to be 1.82~1.89 in measuring range at 2~5% level of glass fiber content, satisfy the existing standards 1.8~2.3. In structural safety performance, the range of flexural strength consequent on glass fiber content was surveyed to be 12.8~30.2MPa, all satisfying the performance standards, while 10MPa and more while the compressive strength range was found to be 41.5~53.3MPa, all satisfying the performance standards, 40~60MPa. This study judged the suitability of only the items for a property of matter of landscape stone GRS by applying the natural-form landscape stone GFRC material standard, but in case an installation constructed with GRS material comes into existence later, there should be comprehensive performance guidelines through the research on durability, landscape performance and environmental and ecological performance.