• Title/Summary/Keyword: Structural property

Search Result 1,380, Processing Time 0.041 seconds

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Assesment of the Characteristics of Hydraulic Storage in Volcanic Region for Applying the Artificial Hydraulic Fracturing - Ulleungdo Site (인공수압파쇄 적용을 위한 울릉도 화산암류 저류특성 평가)

  • Kim Man-Il;Chang Kwang-Soo;Suk Hee-Jun;Kim Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.125-134
    • /
    • 2006
  • In order to establish the in-situ application of the artificial storage and recovery (ASR) technology which is used the property of the aquifer storage of groundwater. We carried out to the in-situ experiments such as borehole TV logging, pumping test and artificial hydraulic fracturing in volcanic island, Ulleungdo. In-situ experiments were conducted to divide the before- and after-hydraulic fracturing. Pumping test was achieved to confirm the two fracture zones, GL-13m and GL-21m, which are determined by the borehole TV logging. From the results of the before- and after-pumping tests, the hydraulic connectivity was confirmed to locate at GL-13m in the residual deposit zone of pumice media as alluvium. However, in the bedrock tone at GL-21m the hydraulic connectivity could be considered to faulty. Consequently, in this study area the artificial recharge has a little unsatisfied to geo-structural condition and desired to more detail investigation works.

Damage Estimation Method for Jacket-type Support Structure of Offshore Wind Turbine (재킷식 해상풍력터빈 지지구조물의 손상추정기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.64-71
    • /
    • 2017
  • A damage estimation method is presented for jacket-type support structure of offshore wind turbine using a change of modal properties due to damage and committee of neural networks for effective structural health monitoring. For more practical monitoring, it is necessary to monitor the critical and prospective damaged members with a limited number of measurement locations. That is, many data channels and sensors are needed to identify all the members appropriately because the jacket-type support structure has many members. This is inappropriate considering economical and practical health monitoring. Therefore, intensive damage estimation for the critical members using a limited number of the measurement locations is carried out in this study. An analytical model for a jacket-type support structure which can be applied for a 5 MW offshore wind turbine is established, and a training pattern is generated using the numerical simulations. Twenty damage cases are estimated using the proposed method. The identified damage locations and severities agree reasonably well with the exact values and the accuracy of the estimation can be improved by applying the committee of neural networks. A verification experiment is carried out, and the damage arising in 3 damage cases is reasonably identified.

Property of Sintered Y2O3-stabilized Zirconia from Scrap Powders (폐 상안정 지르코니아 분말로 제조한 소결체의 물성 연구)

  • Song, Oh-Sung;Park, Jong-Sung;Nam, Kyung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1783-1788
    • /
    • 2009
  • We newly propose that we may reuse scrap powders ($Z_rO_2$+8 mol%-$Y_2O_3$) as $Y_2O_3$-stabilized zirconia (YSZ) sintered products through sintering process at 1550$^{circ}C$ for 2hrs. We also prepared the reference specimen from fresh $Z_rO_2$+30 mol%-$Y_2O_3$ powder mixture (celluar type with 1㎛-length). The reference sample showed a dense microstructure with grains of $\sim$10㎛ in diameter, while the sintered sample from scrap powder showed irregular grains of 1$\sim$30 ㎛ in diameter. Through XRD analysis, we confirmed that the reference sample has mixed phases of $Y_2O_3$(cubic), $Z_{r0.8}O_{1.9}$(cubic), and $Z_rO_2$(monoclinic), while the sintered YSZ sample from scrap powder has only tetragonal phase. Moreover, the sintered YSZ from scrap powder showed vickers hardness and apparent density more than 70 and 4.11 g/cc, which implies that it can be suitable for structural material application.

Effect of Thermal History on the Physical Properties of Nylon66 (열 이력이 나일론66의 물성에 미치는 영향)

  • Lee, Bom Yi;Jo, Chan Woo;Shim, Chang Up;Lim, Su Jung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Nylon66 extrudates as a function of the extrusion number were prepared by a twin screw extruder. Chemical structures, thermal properties, melt index, crystal structures, mechanical properties such as the tensile strength, elongation at break and impact strength, and rheological property were measured by FT-IR, $^1H$-NMR, melt indexer, DSC, TGA, XRD, universal tensile tester, Izod impact tester, and rheometer. FT-IR and $^1H$-NMR characterizations indicated that the number of extrusions did not affect the chemical structure. The decrease in the molecular weight was checked by the melt index of extrudates. There were no effects of the thermal history on the melting and degradation temperature. The tensile and impact strength and modulus were found to be similar, regardless of the number of extrusions, but the elongation decreased significantly. The complex viscosity of extrudates at low frequencies decreased with the extrusion number. No structural changes after extrusion were confirmed from the fact that there was no change in the slope and shape of G'-G" plot.

Preparation of Cellulose-Based Edible Film and its Physical Characteristics (Cellulose를 이용한 가식성(可食性) Film의 제조와 물리적 특성연구)

  • Song, Tae-Hee;Kim, Chul-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • Three formulations were used to prepare the cellulose-based edible films consisting of hydrocolloid and lipids; film A made by coating method, films B and C by emulsion method, which were formed in a thin layer glass plate and then dried. Films A, B and C were all approximately 0.03 mm thick with 1-3% moisture, 59-68% lipid, and almost whitish color. Film A was better in tensile strength, and lipids affected water vapor permeability on three films, in which films A and B did not differ significantly. Water vapor permeability of film A did not change but those of films B and C decreased significantly after storage for 8 weeks at $-15^{\circ}C$. Oxygen transmission rate and oxygen permeability of films A and C did not differ and changed significantly after 8-week storage at $-15^{\circ}C$. Under scanning electron microscope (SEM) observation on the structural characteristics of each film, film A indicated relatively uniform and smooth surface coatings of beeswax, while films B and C had individual lipid crystals and could be discerned. As a result, film A was better than films B and C in respect of physical properties, but the selection of useful film depended upon which physical property was more functional. Moreover, it was desirable in some cases for using films B and C because of their easiness of preparation and cold storage durability. It will be further needed to investigate how to formulate films B and C to have more unique surface characteristics, and to reduce water vapor and oxygen transmission rates.

  • PDF

A Biomechanical Modeling of Human Pharyngeal Muscular Dysfunction by Using FEM(Finite Element Method) (유한요소법을 이용한 인두의 기능이상에 대한 생체역학적 모델)

  • Kim Sung Jae;Bae Ha Suk;Choi Byeong Cheol;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.515-522
    • /
    • 2003
  • Pharynx is a system transporting foods by peristaltic motion(contraction and expansion movement! into the esophagus and functioning as airway passages. In this study, structural changes of pharyngeal dysfunction are analyzed by biomechanical model using CT and FEM(finite clement method). Loading condition was assumed that equal pressure was loaded sequentially to inside of pharyngeal tissue. In order to analyze the pharyngeal muscular dysfunction by biomechanical model. the pharyngeal dysfunctions was classified into 3 cases. Taking into account the clinical complication by neuromuscular symptoms such as pharyngeal dysfunction after stroke. we assumed that a change of material property is caused by muscular tissue stiffness. A deformation of cross sectional area of the pharynx is analyzed increasing the stiffness $25\%,\;50\%,\;75\%$ in each case on the basis of stress-strain relationship. Based on three-dimensional reconstruction of pharyngeal structure using limited factor - techniques and the optimization procedure by means of inverse dynamic approach. the biomechanical model of the human pharynx is implemented. The results may be used as clinical index illustrating the degree of pharyngeal muscular dysfunction. This study may be used as useful diagnostic model in discovering early deglutitory impediment caused by physiological or pathological pharyngeal dysfunction.

Synthesis and Biocompatibility Study of Hydrogel for Patch Sensor in Non-invasive Glucose Monitoring System (무채혈 혈당 측정시스템의 Patch Sensor용 수화젤의 합성 및 생체적합성에 관한 연구)

  • Kwon, Jeong-Woo;Kim, Dong-Chul;Yoon, In-Joon;Jeong, Yoon-Na;Jeong, Ji-Young;Hwang, In-Sik
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 2009
  • This study aims to verify for humans the suitability of the enzyme-fixed hydrogel used for the patch sensor of the blood sugar testing system without blood sampling, which utilizes reverse iontophoresis. Using acrylate monomers, hydrogel was synthesized to which a certain unit of enzyme is fixed. In order to analyze the material property of the synthesized hydrogel, a structural analysis was performed using FT-IR spectroscopy, while the DSC was used to verify the thermal stability. In addition, with the UV-Vis spectrophotometer, it was verified that the degree of active enzyme is at least 50% greater than the standard product. The SEM was used to verify secure fixation of the enzyme onto the surface. As a result, it was observed that the enzyme is successfully fixed to the surface. Since the hydrogel makes direct contact with a patient's skin, it is essential to evaluate the toxicity when making direct contact with the skin. For that purpose, various sets of tests were undertaken according to the ISO 10993-cytotoxicity, intracutaneous reactivity, skin irritation test and maximization sensitization. Consequently, it was successfully verified that the enzyme-fixed hydrogel have bioavailability.

Image Processing of Pseudo-rate-distortion Function Based on MSSSIM and KL-Divergence, Using Multiple Video Processing Filters for Video Compression (MSSSIM 및 쿨백-라이블러 발산 기반 의사 율-왜곡 평가 함수와 복수개의 영상처리 필터를 이용한 동영상 전처리 방법)

  • Seok, Jinwuk;Cho, Seunghyun;Kim, Hui Yong;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.768-779
    • /
    • 2018
  • In this paper, we propose a novel video quality function for video processing based on MSSSIM to select an appropriate video processing filter and to accommodate multiple processing filters to each pixel block in a picture frame by a mathematical selection law so as to maintain video quality and to reduce the bitrate of compressed video. In viewpoint of video compression, since the properties of video quality and bitrate is different for each picture of video frames and for each areas in the same frame, it is difficult for the video filter with single property to satisfy the object of increasing video quality and decreasing bitrate. Consequently, to maintain the subjective video quality in spite of decreasing bitrate, we propose the methodology about the MSSSIM as the measure of subjective video quality, the KL-Divergence as the measure of bitrate, and the combination method of those two measurements. Moreover, using the proposed combinatorial measurement, when we use the multiple image filters with mutually different properties as a pre-processing filter for video, we can verify that it is possible to compress video with maintaining the video quality under decreasing the bitrate, as possible.

Effect of Characteristic Change in Natural Graphite according to Complex Purification Process on Anode Performance for Lithium Ion Battery (복합 정제 공정에 따른 천연 흑연의 물리화학적 특성 변화가 리튬 이온 전지의 음극재 성능에 미치는 영향)

  • Ahn, Won Jun;Hwang, Jin Ung;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.290-298
    • /
    • 2021
  • A purification process was performed for the application of natural graphite as an anode material. The influence of the structural change and impurity content of graphite according to the process on the anode electrochemical characteristics was investigated. Natural graphite was chemically/physically purified by acid-treatment which used different amounts of solution of ammonium fluoride/sulfuric acid in the same ratio and thermal treatment used different temperatures (800~2500 ℃). Acid-treatment had limitation to remove impurities, and identified that all impurity contents was removed except some traces of atom such as Si by after progressed thermal-treatment until 2500 ℃. The anode materials characteristic of graphite treated by purification process was improved, and changes in the structure and impurity contents affected dominantly the capacity, rate property and initial Coulombic efficiency. Consequently, the complex purification process improved the graphite structure and also the performance of lithium ion battery by controlling the excessive formation of solid electrolyte interphase and expanding Li+ insertion space originated from the effective removal of impurities.