Browse > Article
http://dx.doi.org/10.14478/ace.2021.1029

Effect of Characteristic Change in Natural Graphite according to Complex Purification Process on Anode Performance for Lithium Ion Battery  

Ahn, Won Jun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology)
Hwang, Jin Ung (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology)
Im, Ji Sun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology)
Kang, Seok Chang (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 290-298 More about this Journal
Abstract
A purification process was performed for the application of natural graphite as an anode material. The influence of the structural change and impurity content of graphite according to the process on the anode electrochemical characteristics was investigated. Natural graphite was chemically/physically purified by acid-treatment which used different amounts of solution of ammonium fluoride/sulfuric acid in the same ratio and thermal treatment used different temperatures (800~2500 ℃). Acid-treatment had limitation to remove impurities, and identified that all impurity contents was removed except some traces of atom such as Si by after progressed thermal-treatment until 2500 ℃. The anode materials characteristic of graphite treated by purification process was improved, and changes in the structure and impurity contents affected dominantly the capacity, rate property and initial Coulombic efficiency. Consequently, the complex purification process improved the graphite structure and also the performance of lithium ion battery by controlling the excessive formation of solid electrolyte interphase and expanding Li+ insertion space originated from the effective removal of impurities.
Keywords
Natural graphite; Anode; Purification; Lithium ion battery; Impurity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. T. Hang, I. Watanabe, T. Doi, S. Okada, and J. I. Yamaki, Electrochemical properties of nano-sized Fe2O3-loaded carbon as a lithium battery anod, J. Power Sources, 161(2), 1281-1287 (2006).   DOI
2 A. K. Friedman, W. Shi, Y. Losovyj, A. R. Siedle, and L. A. Baker, Mapping microscale chemical heterogeneity in Nafion membranes with X-ray photoelectron spectroscopy, J. Electrochem. Soc., 165 (11), H733 (2018).   DOI
3 D. D. Hawn and B. M. DeKoven, Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides, Surf. Interface Anal., 10(2-3), 63-74 (1987).   DOI
4 I. Mochida, C. H. Ku, S. H. Yoon, and Y. Korai, Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries, J. Power Sources, 75(2), 214-222 (1998).   DOI
5 D. Bar-Tow, E. Peled, and L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc., 146(3), 824 (1999).   DOI
6 A. Manthiram, An outlook on lithium ion battery technology, ACS Central. Sci., 3(10), 1063-1069 (2017).   DOI
7 M. Nie, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy, J. Phys. Chem. C, 117(26), 13403-13412 (2013).   DOI
8 B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen, G. Yi, L. Chen, J. Yu, Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Process. Technol., 172, 162-171 (2018).   DOI
9 S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016).   DOI
10 H. Zhao, J. Ren, X. He, J. Li, C. Jiang, and C. Wan, Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries, Electrochim. Acta, 52(19), 6006-6011 (2007).   DOI
11 H. Wang, Q. Feng, X. Tang, and K. Liu, Preparation of high-purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre-treatment and acid leaching process, Sep. Sci. Technol., 51(14), 2465-2472 (2016).   DOI
12 R. Lloyd and M. J. Turner, Method for the continuous chemical reduction and removal of mineral matter contained in carbon structure, US Patent 4,780,112 (1988).
13 M. A. Hannan, M. H. Lipu, A.Hussain, and A. Mohamed, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renew. Sust. Energ. Rev., 78, 834-854 (2017).   DOI
14 A. F. Gonzalez, N. H. Yang, and R. S. Liu, Silicon anode design for lithium-ion batteries: Progress and perspectives, J. Phys. Chem. C, 121(50), 27775-27787 (2017).   DOI
15 N. Dimov, S. Kugino, and M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: Advantages and limitations, Electrochim. Acta, 48(11), 1579-1587 (2003).   DOI
16 N. A. Laziz, J. Abou-Rjeily, A. Darwiche, J. Toufaily, A. Outzourhit, F. Ghamouss, and M. T. Sougrati, Li-and Na-ion storage performance of natural graphite via simple flotation process, J. Electrochem. Sci. Technol., 9(4), 320-329 (2018).   DOI
17 B. G. Kim, S. K. Choi, C. L. Park, H. S. Chung, and H. S. Jeon, Inclusion of gangue mineral and its mechanical separation from expanded graphite, Part. Sci. Technol., 21(4), 341-351 (2003).   DOI
18 T. Matsumoto and T. Hoshikawa., Method for manufacturing high purity graphite material. US Patent 5,419,889 (1995).
19 X. Ding, R. Wang, X. Zhang, Y. Zhang, S. Deng, F. Shen, and L. Wang, A new magnetic expanded graphite for removal of oil leakage, Mar. Pollut. Bull., 81(1), 185-190 (2014).   DOI
20 H. Shi, J. Barker, M. Y. Saidi, and R. Koksbang, Structure and lithium intercalation properties of synthetic and natural graphite, J. Electrochem. Soc., 143(11), 3466-3472 (1996).   DOI
21 A. D. Jara, A. Betemariam, G. Woldetinsae, and J. Y. Kim, Purification, application and current market trend of natural graphite: A review, Int. J. Min. Sci. Technol., 29(5), 671-689 (2019).   DOI
22 N. C. Gallego, C. I. Contescu, H. M. Meyer III, J. Y. Howe, R. A. Meisner, E. A. Payzant, M. J. Lance, S. Y. Yoon, M. Denlinger, D. L. Wood III, Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries, Carbon, 72, 393-401 (2014).   DOI
23 K. Zaghib, X. Song, A. Guerfi, R.Rioux, and K. Kinoshita, Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal., J. Power Sources, 119, 8-15 (2003).   DOI
24 J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites, Sustain. Energ. Fuels., 4(11), 5387-5416 (2020).   DOI
25 T. S. Aaraes, E. Ringdalen, and M. Tangstad, Silicon carbide formation from methane and silicon monoxide, Sci. Rep., 10(1), 1-11 (2020).   DOI
26 A. D. Jara, and J. Y. Kim, Chemical purification processes of the natural crystalline flake graphite for Li-ion Battery anodes, Mater. Today Commun., 25, 101437 (2020).   DOI
27 K. Leung, and J. L. Budzien, Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys., 12(25), 6583-6586 (2010).   DOI
28 Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., 204(3-4), 277-282 (1993).   DOI
29 E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, The effect of acid treatment on the surface chemistry and topography of graphite, Carbon, 61, 124-133 (2013).   DOI
30 E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, Improved graphite anode for lithium-ion batteries chemically: Bonded solid electrolyte interface and nanochannel formation, J. Electrochem. Soc., 143(1), L4 (1996).   DOI
31 Y. Lin, Z. H. Huang, X. Yu, W. Shen, Y. Zheng, and F. Kang, Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid, Electrochim. Acta, 116, 170-174 (2014).   DOI
32 J. Christensen and J. Newman, Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery, J. Electrochem. Soc., 150(11), A1416 (2003).   DOI
33 U. Anik, S. Cevik, and M. Pumera, Effect of nitric acid "washing" procedure on electrochemical behavior of carbon nanotubes and glassy carbon µ-particles, Nanoscale Res. Lett., 5(5), 846-852 (2010).   DOI
34 T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, J. Ozaki, and T. Kyotani, Analyses of trace amounts of edge sites in natural graphite, synthetic graphite and high-temperature treated coke for the understanding of their carbon molecular structures, Carbon, 125, 146-155 (2017).   DOI
35 S. Kundu, Y. Wang, W. Xia, and M. Muhler, Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study, J. Phys. Chem. C, 112(43), 16869-16878 (2008).   DOI
36 R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi, and S. Santucci, XPS studies on SiOx thin films, Appl. Surf. Sci., 70, 222-225 (1993).   DOI
37 Q. Wang, Y. Ma, L. Liu, S. Yao, W. Wu, Z. Wang, and K. K. Ostrikov, Plasma enabled Fe2O3/Fe2O4 nano-aggregates anchored on nitrogen-doped graphene as anode for sodium-ion batteries, Nanomaterials, 10(4), 782-793 (2020).   DOI
38 S. Tougaard, Improved XPS analysis by visual inspection of the survey spectrum, Surf. Interface Anal., 50(6), 657-666 (2018).   DOI
39 J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2(6), 1319-1324 (2000).   DOI
40 J. W. Song, C. C. Nguyen, and S. W. Song, Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries, RSC Adv., 2(5), 2003-2009 (2012).   DOI
41 H. Zhu, M. H. A. Shiraz, L. Liu, Y. Hu, and J. Liu, A facile and low-cost Al2O3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries, Nanotechnology, 32(14), 144001 (2021).   DOI
42 S. Contarini, S. P. Howlett, C. Rizzo, and B. A. De Angelis, XPS study on the dispersion of carbon additives in silicon carbide powders, Appl. Surf. Sci., 51(3-4), 177-183 (1991).   DOI
43 M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, Aluminum for plasmonics, ACS Nano, 8(1), 834-840 (2014).   DOI
44 B. Lesiak, L. Kover, J. Toth, J. Zemek, P. Jiricek, A. Kromka, and N. J. A. S. S. Rangam, C sp2/sp3 hybridisations in carbon nanomaterials-XPS and (X) AES study, Appl. Surf. Sci., 452, 223-231 (2018).   DOI