Browse > Article
http://dx.doi.org/10.14478/ace.2013.1116

Effect of Thermal History on the Physical Properties of Nylon66  

Lee, Bom Yi (Major in Polymer Science and Engineering, Kongju National University)
Jo, Chan Woo (Major in Polymer Science and Engineering, Kongju National University)
Shim, Chang Up (Technical Research Center, ENA Industry)
Lim, Su Jung (Technical Research Center, ENA Industry)
Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.25, no.1, 2014 , pp. 90-95 More about this Journal
Abstract
Nylon66 extrudates as a function of the extrusion number were prepared by a twin screw extruder. Chemical structures, thermal properties, melt index, crystal structures, mechanical properties such as the tensile strength, elongation at break and impact strength, and rheological property were measured by FT-IR, $^1H$-NMR, melt indexer, DSC, TGA, XRD, universal tensile tester, Izod impact tester, and rheometer. FT-IR and $^1H$-NMR characterizations indicated that the number of extrusions did not affect the chemical structure. The decrease in the molecular weight was checked by the melt index of extrudates. There were no effects of the thermal history on the melting and degradation temperature. The tensile and impact strength and modulus were found to be similar, regardless of the number of extrusions, but the elongation decreased significantly. The complex viscosity of extrudates at low frequencies decreased with the extrusion number. No structural changes after extrusion were confirmed from the fact that there was no change in the slope and shape of G'-G" plot.
Keywords
Nylon66; thermal history; extrudate; rheological and physical properties;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 C. H. Do, E. M. Pearce, and B. J. Bulkin, FT-IR spectroscopic study on the thermal and thermal oxidative degradation of nylons, J. of Polym. Sci.: Part A: Polym. Chem., 25, 2409-2424 (1987).
2 C. H. Hong, B. W. Nam, and D. S. Han, The present situation and prediction of biomass-based nylon, Polymer Science and Technology, 21, 321-325 (2010).   과학기술학회마을
3 K. S. Kim, K. M. Bae, S. Y. Oh, M. K. Seo, C. G. Kang, and S. J. Park, Trend of carbon fiber-reinforced composites for lightweight vehicles, Elastomers and Composites, 47, 65-74 (2012).   과학기술학회마을   DOI   ScienceOn
4 B. J. Holland and J. N. Hay, Thermal degradation of nylon polymers, Polym. Int., 49, 943-948 (2000).   DOI
5 U. S. Ishiaku, H. Hamada, M. Mizoguchi, W. S. Chow, and Z. A. Mohd Ishak, The effect of ambient moisture and temperature conditions on the mechanical properties of glass fiber/carbon fiber/ nylon6 sandwich hybrid composites consisting of Skin-Core morphologies, Polym. Composites, 52-59 (2005).
6 A. Valle's-Lluch, W. Camacho, A. Ribes-Greus, and S. Karlsson, Influence of water on the viscoelastic behavior of recycled nylon6,6, J. Appl. Polym. Sci., 85, 2211-2218 (2002).   DOI   ScienceOn
7 M. A. Schaffer, K. B. McAuley, E. K. Marchildon, and M. F. Cunningham, Thermal degradation kinetics of nylon66 : experimental study and comparison with model predictions, Macromol. React. Eng., 1, 563-577 (2007).   DOI
8 S. V. Levchik, E. D Weil, and M. Lewin, Thermal decomposition of aliphatic nylons, Polym. Int., 48, 532-557 (1999).   DOI
9 H. Mitomo, Estimation of Lamellar thickness of nylon66 single crystal by hydrolysis and gel permeation chromatography, J. Polym. Sci., Polym. Phys., 26, 467-472 (1988).   DOI   ScienceOn
10 Z. A. Alothman, M. M. Alam, and M. Naushad, Heavy toxic metal ion exchange kinetics : Validation of ion exchange process on composite cation exchanger nylon6,6 Zr(IV) phosphate, J. Indus. Eng. Chem., 19, 956-960 (2013).   DOI   ScienceOn
11 R. K. Ayyer and A. I. Leonov, Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates, Rheol Acta, 43, 283-292 (2004).   DOI   ScienceOn
12 H. Mitomo, K. Nakazato, and I. Kuriyama, Stepwise lamellar thickening of nylon66 crystal by annealing in glycerol, J. Polym. Sci., Polym. Phys. Ed., 15, 915-919 (1977).   DOI   ScienceOn
13 Y. Li, D. Yan, and E. Zhou, In situ Fourier transform IR spectroscopy and variable-temperature wide-angle X-ray diffraction studies on the crystalline transformation of melt-crystallized nylon1212, Colloid Polym. Sci., 280, 124-129 (2002).   DOI
14 E. C. Botelho, C. L. Nogueira, and M. C. Rezende, Monitoring of nylon6,6/carbon fiber composites processing by X-ray diffraction and thermal analysis, J. Appl. Polym. Sci., 86, 3114-3119 (2002).   DOI   ScienceOn
15 G. Xu, G. Chen, Y. Ma, Y. Ke, and M. Han, Rheology of a low-filled polyamide6/montmorillonite nanocomposite, J. Appl. Poly. Sci., 108, 1501-1505 (2008).   DOI   ScienceOn
16 L. Zonder, A. Ophir, S. Kenig, and S. McCarthy, The effect of carbon nanotubes on the rheology and electrical resistivity of polyamide12/ high density polyethylene blends, Polymer, 52, 5085-5091 (2011).   DOI   ScienceOn
17 K. H. Yoon, J. W. Lee, and Y. C. Kim, Rheological properties and foaming behaviors of modified PP/nano-filler composites, Polymer (Korea), 37, 494-499 (2013).   과학기술학회마을   DOI   ScienceOn
18 B. Schartel, P. Potschke, U. Knoll, and M. Abdel-Goad, Fire behaviour of polyamide6/multiwall carbon nanotube nanocomposites, Euro. Polym. J., 41, 1061-1070 (2005).   DOI   ScienceOn
19 R. P. Singh, S. M. Desai, and G. Pathak, Thermal decomposition kinetics of photooxidized nylon66, J. Appl. Polym. Sci., 87, 2146-2150 (2003).   DOI   ScienceOn
20 M. J. Lozano-Gonzalez, M. T. Rodriguez-Hernandez, E. A. G.-D. L. Santos, and J. V. Olmos, Physical-mechanical properties and morphological study on nylon6 recycling by injection molding, J. Appli. Polym. Sci., 76, 851-858 (2000).   DOI