• Title/Summary/Keyword: Structural properties

Search Result 7,399, Processing Time 0.04 seconds

Structural Ordering Effect on Photoluminescence Properties of $Eu^{3+}$ Doped Perovskite Tungstate $A_2BWO_6$ System

  • Yo, Chul-Hyun
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.153-155
    • /
    • 1998
  • The optical spectroscopic properties of the ordered perovskite structure A2BWO6 doped with Eu3+ have been studied. The experimental result about Eu3+ ordering in the system of A2BWO6 indicate the different structural conditions. Some influence of Eu3+ substitutioin on the different types of cation site have been investigated.

  • PDF

Seismic Qualification of Plant Protection System Cabinet for Nuclear Power Plant (원자력발전소 보호시스템 캐비넷의 내진검증)

  • 정명조;박근배;황원걸
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.148-155
    • /
    • 1992
  • A method to verify seismic qualification of the plant protection system cabinet for a nuclear power plant is presented. A finite element model of the cabinet is developed and correlated to the dynamic properties observed during in-situ vibration test of the actual structure. The results of the modal analysis provide insight into the fundamental dynamic properties of the structure. Techniques for verifying structural integrity and operability are exemplified by summarizing response spectrum and time history analyses of the structure.

  • PDF

Evaluations of Sb20Se80-xGex (x = 10, 15, 20, and 25) Glass Stability from Thermal, Structural and Optical Properties for IR Lens Application

  • Jung, Gun-Hong;Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.484-491
    • /
    • 2017
  • Chalcogenide glasses have been investigated in their thermodynamic, structural, and optical properties for application in various opto-electronic devices. In this study, the $Sb_{20}Se_{80-x}Ge_x$ with x = 10, 15, 20, and 25 were selected to investigate the glass stability according to germanium ratios. The thermal, structural, and optical properties of these glasses were measured by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and UV-Vis-IR Spectrophotometry, respectively. The DSC results revealed that $Ge_{20}Sb_{20}Se_{60}$ composition showing the best glass stability theoretically results due to a lower glass transition activation energy of 230 kJ/mol and higher crystallization activation energy of 260 kJ/mol. The structural and optical analyses of annealed thin films were carried out. The XRD analysis reveals obvious results associated with glass stabilities. The values of slope U, derived from optical analysis, offered information on the atomic and electronic configuration in Urbach tails, associated with the glass stability.

The Structural Properties Of the (Ba1Sr)(Nb1Ti)O3[BSNT] Thin Films with Ar/O2Ratios (Ar/O2비에 따른 (Ba1Sr)(Nb1Ti)O3[BSNT] 박막의 구조적 특성)

  • 남성필;이상철;이영희;이성갑
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.317-321
    • /
    • 2003
  • In this study, the structural properties were Investigated for the deposited (Ba,Sr)(Nb,Ti)O$_3$[BSNT] thin films grown on Pt/TiO$_2$/SiO$_2$/Si substrate by RF sputtering method. The structural properties of the BSNT thin films affected by the Ar/02 ratios were Investigated. In the case of the BSNT thin films deposited with condition of 60/40(Ar/O$_2$) ratio, the BaTiO$_3$, SrTiO$_3$ and BaNbO$_3$ phases were showed. The composition ratio of Nb and Ti in the BSNT thin films were nearly equivalent. Also, in the BSNT thin films deposited with condition of 60/40 and 80/20(Ar/O$_2$) ratios, the composition of Ba, Sr, Nb and Ti were relatively uniform. The Ba, Sr, Nb and Ti in the BSTN thin films were not diffused into the Pt layer.

Structural and Optical Properties of HfO2 Films on Sapphire Annealed in O2 Ambient

  • Park, Jong-Chan;Yoon, Yung-Sup;Kang, Seong-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.563-567
    • /
    • 2016
  • The structural properties of $HfO_2$ films could be improved by thermal treatment owing to their crystallization. We deposited $HfO_2$ films on sapphire by radio frequency (RF) magnetron sputtering, whose base vacuum pressure was lower than $4.5{\times}10^{-6}$ Pa, RF power was 100 W, working temperature was $200^{\circ}C$, working pressure was 3 mTorr, and the density of the active gas (Argon) was 20 sccm. After depositing the $HfO_2$ films, the samples were thermally treated by rapid thermal annealing (RTA) in $O_2$ ambient at different temperatures. Subsequently, the measured physical properties (structural, morphological, and optical) indicated that the crystallite size, refractive index at a wavelength of 632 nm, and packing density increased with rising temperatures. In particular, an $HfO_2$ film thermally treated at $800^{\circ}C$ in $O_2$ ambient had the highest refractive index of 2.0237 and packing density of 0.9638. The relation between optical and structural properties was also analyzed.

Microstructure Evolution and Mechanical Properties of Wire-Brushed Surface and Roll-Bonded Interface of Aluminum Sheets (와이어 브러싱한 알루미늄 판재 표면 및 압연접합 계면의 미세조직 및 기계적 성질)

  • Kim, Su-Hyeon;Kim, Hyoung-Wook;Kang, Joo-Hee;Euh, Kwangjun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.380-387
    • /
    • 2011
  • Wire brushing, which is a typical surface preparation method for roll bonding, has recently been highlighted as a potentially effective method for surface nanocrystallization. In the present study, the microstructure evolution and hardness of the wire-brushed surface and roll-bonded interface of a 1050 aluminum sheet were investigated. Wire brushing formed protruded layers with a nanocrystalline structure and extremely high surface hardness. After roll bonding, the protruded layers remained as hard layers at the interface. Due to their hardness and brittleness the interface hard layers, can affect the interface bonding properties and also play an important role determining the mechanical properties of multi-layered clad sheets.

Electrical properties of NKN-0.94BNT-0.06BT ceramics (NKN-0.94BNT-0.06BT 세라믹스의 전기적특성)

  • Lee, Young-Hie;Nam, Sung-Pill;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Seung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.298-298
    • /
    • 2010
  • In this study, both structural, dielectric properties of the NKN-0.94BNT-0.06BT ceramics were investigated. All samples of the NKN-0.94BNT-0.06BT ceramics were fabricated by conventional mixed oxide method with Pt electrodes. We report the improved electrical properties in the perovskite structure composed of the NKN, BNT and the BT ceramics. We investigated the effects of NKN, BT on the structural and electrical properties of the NKN-0.94BNT-0.06BT ceramics. The dielectric and structural properties of the NKN-0.94BNT-0.06BT ceramics were superior to those of single composition NKN, NKN-BNT and those values for the NKN-0.94BNT-0.06BT ceramics were 1455, 0.025 and $29.04{\mu}C/cm^2$.

  • PDF

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis

  • Sin, Chang-Mi;Ryu, Hyeok-Hyeon;Lee, Jae-Yeop;Heo, Ju-Hoe;Park, Ju-Hyeon;Lee, Tae-Min;Choe, Sin-Ho;Fei, Han Qi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • The zinc oxide (ZnO) material as the II-VI compound semiconductor is useful in various fields of device applications such as light-emitting diodes (LEDs), solar cells and gas sensors due to its wide direct band gap of 3.37eV and high exciton binding energy of 60meV at room temperature. In this study, the ZnO nanorods were deposited onto homogenous buffer layer/Si(100) substrates by a hydrothermal synthesis. The Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis were investigated. For the buffer layer annealing case, the annealed buffer layer surface became rougher with increasing of annealing temperature up to $750^{\circ}C$, while it was smoothed with more increasing of annealing temperature due to the evaporation of buffer layer. It was found that the roughest surface of buffer layer improved the structural and optical properties of ZnO nanorods. For the post annealing case, the hydrothermally grown ZnO nanorods were annealed with various temperatures ranging from 450 to $900^{\circ}C$. Similarly in the buffer layer annealing case, the post annealing enhanced the properties of ZnO nanorods with increasing of annealing temperature up to $750^{\circ}C$. However, it was degraded with further increasing of annealing temperature due to the violent movement of atoms and evaporation. Finally, the buffer layer annealing and post annealing treatment could efficiently improve the properties of hydrothermally grown ZnO nanorods. The morphology and structural properties of ZnO nanorods grown by the hydrothermal synthesis were measured by atomic force microscopy (AFM), field emission scanning electron microscopy (SEM), and x-ray diffraction (XRD). The optical properties were also analyzed by photoluminescence (PL) measurement.

  • PDF

Computation of Equivalent Material Properties of Woven Fabric Composites Using Homogenization Technique (균질화기법을 이용한 WFC의 등가물성치 산출)

  • 이진희;장지현;윤민우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.1-7
    • /
    • 1997
  • Equivalent thermal conductivities and elasticity properties of woven fabric composites are computed using homogenization technique. The computational results show that the strength and thermal conductivity linearly increase with fiber volume fraction and that the variations of undulation of fibers has little effect on equivalent material properties. Homogenization technique is proved useful in the study of woven fabric composites and may find a lot more applications in the area.

  • PDF