DOI QR코드

DOI QR Code

Evaluations of Sb20Se80-xGex (x = 10, 15, 20, and 25) Glass Stability from Thermal, Structural and Optical Properties for IR Lens Application

  • Jung, Gun-Hong (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Kong, Heon (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Yeo, Jong-Bin (The Research Institute for Catalysis, Chonnam National University) ;
  • Lee, Hyun-Yong (School of Chemical Engineering, Chonnam National University)
  • Received : 2017.06.30
  • Accepted : 2017.10.22
  • Published : 2017.11.30

Abstract

Chalcogenide glasses have been investigated in their thermodynamic, structural, and optical properties for application in various opto-electronic devices. In this study, the $Sb_{20}Se_{80-x}Ge_x$ with x = 10, 15, 20, and 25 were selected to investigate the glass stability according to germanium ratios. The thermal, structural, and optical properties of these glasses were measured by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and UV-Vis-IR Spectrophotometry, respectively. The DSC results revealed that $Ge_{20}Sb_{20}Se_{60}$ composition showing the best glass stability theoretically results due to a lower glass transition activation energy of 230 kJ/mol and higher crystallization activation energy of 260 kJ/mol. The structural and optical analyses of annealed thin films were carried out. The XRD analysis reveals obvious results associated with glass stabilities. The values of slope U, derived from optical analysis, offered information on the atomic and electronic configuration in Urbach tails, associated with the glass stability.

Keywords

References

  1. X. Gai, T. Han, A. Prasad, S. Madden, D. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, "Progress in Optical Waveguides Fabricated from Chalcogenide Glasses," Opt. Express, 18 [25] 26635-46 (2010). https://doi.org/10.1364/OE.18.026635
  2. B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, "Fabrication and Characterization of Bare Ge-Sb-Se Chalcogenide Glass Fiber Taper," Infrared Phys. Technol., 80, 105-11 (2017). https://doi.org/10.1016/j.infrared.2016.08.016
  3. G. G. Devyatykh and E. M. Dianov, "Research In KRS-5 And Chalcogenide Glass Fibers," SPIE PROC., 484, 105 (1984).
  4. K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, "Contactless Molding of Arrayed Chalcogenide Glass Lenses," J. Non-Cryst. Solids, 357, 2484-88 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.11.077
  5. D. H. Cha, J. H. Kim, and H. J. Kim, "Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation (in Korean)", J. KIEEME, 27 [2] 91-6 (2014).
  6. D. S. Bae, J. B. Yeo, and H. Y. Lee, "A Study on a Production and Processing Technique for a GeSbSe Aspheric Lens with a Mid-infrared Wavelength Band," J. Korean Phys. Soc., 62 [11] 1610-15 (2013). https://doi.org/10.3938/jkps.62.1610
  7. A. K. Singh, "Crystallization Kinetics of Chalcogenide Glasses," pp. 29-64 in Crystallization-Science and Technology, Ed. by B. Andreeta, InTech, 2012.
  8. M. Saxena, "A Crystallization Study of Amorphous Tex$(Bi_2Se_3)_{1-x}$ Alloys with Variation of the Se Content," J. Phys. D: Appl. Phys., 38 [3] 460-63 (2005). https://doi.org/10.1088/0022-3727/38/3/017
  9. P. Sharma, I. Sharma, and S. C. Katyal, "Physical and Optical Properties of Binary Amorphous Selenium-Antimony Thin Films," J. Appl. Phys., 105 [5] 053509 (2009). https://doi.org/10.1063/1.3087520
  10. D. Tonchev and S. O. Kasap, "Thermal Properties of $Sb_xSe_{100-x}$ Glasses Studied by Modulated Temperature Differential Scanning Calorimetry," J. Non-Cryst. Solids, 248 [1] 28-36 (1999). https://doi.org/10.1016/S0022-3093(99)00100-3
  11. S. Sharda, N. Sharma, P. Sharma, and V. Sharma, "Band Gap and Dispersive Behavior of Ge Alloyed a-SbSe Thin Films Using Single Transmission Spectrum," Mater. Chem. Phys., 134, 158-62 (2012). https://doi.org/10.1016/j.matchemphys.2012.02.045
  12. W. H. Wei, R. P. Wang, X. Shen, L. Fang, and L. D. Barry, "Correlation between Structural and Physical Properties in Ge-Sb-Se Glasses," J. Phys. Chem. C, 117 [32] 16571-76 (2013). https://doi.org/10.1021/jp404001h
  13. M. Lasocka, "The Effect of Scanning Rate on Glass Transition Temperature of Splat-Cooled $Te_{85}Ge_{15}$," Mater. Sci. Eng., 23 [2-3] 173-76 (1976). https://doi.org/10.1016/0025-5416(76)90189-0
  14. A. H. Moharram, A. A. Abu-Sehly, M. A. El-Oyoun, and A. S. Slotan, "Pre-Crystallization and Crystallization Kinetics of Some Se-Te-Sb Glasses," Phys. B, 324 [1-4] 344-51 (2002). https://doi.org/10.1016/S0921-4526(02)01421-7
  15. N. Mehta and A. Kumar, "Critical Analysis of Endo-Thermal Effect in the Glass Transition Process in Chalcogenide Glasses," J. Non-Cryst. Solids, 358 [20] 2783-87 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.07.002
  16. A. Kaswan, V. Kumari, D. Patidar, N. S. Saxena, and K. Sharma, "Kinetics of Phase Transformations and Thermal Stability of $Ge_xSe_{70}Sb_{30-x}$ (x = 5, 10, 15, 20) Chalcogenide Glasses," New J. Glass Ceram., 2013 [3] 99-103 (2013).
  17. M. M. A. Imran, D. Bhandari, and N. S. Saxena, "Enthalpy Recovery during Structural Relaxation of $Se_{96}In_4$ Chalcogenide Glass," Phys. B, 293 [3-4] 394-401 (2001). https://doi.org/10.1016/S0921-4526(00)00543-3
  18. H. E. Kissinger, "Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis," J. Res. Natl. Bur. Stand., 57 [4] 217-21 (1956). https://doi.org/10.6028/jres.057.026
  19. H. S. Chen, "A Method for Evaluating Viscosities of Metallic Glasses from the Rate of Thermal Transformations," J. Non-Cryst. Solids, 27 [2] 257-63 (1978). https://doi.org/10.1016/0022-3093(78)90128-X
  20. J. A. Augis, J. E. Bennett, "Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method," J. Therm. Anal., 13 [2] 283-92 (1978). https://doi.org/10.1007/BF01912301
  21. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis," J. Anal. Chem., 29 [11] 1702-6 (1957). https://doi.org/10.1021/ac60131a045
  22. M. Avrami, "Kinetics of Phase Change. I. General Theory," J. Chem. Phys., 7 [12] 1103-12 (1939). https://doi.org/10.1063/1.1750380
  23. M. Avrami, "Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei," J. Chem. Phys., 8 [2] 212 (1940). https://doi.org/10.1063/1.1750631
  24. M. Muiva, T. Stephan, and M. Julius, "Crystallisation Kinetics, Glass Forming Ability and Thermal Stability in Glassy Se100-xInx Chalcogenide Alloys," J. Non-Cryst. Solids, 357 [22-23] 3726-33 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.07.033
  25. A. A. Al-Ghamdi, M. A. Alvi, and S. A. Khan, "Non-Isothermal Crystallization Kinetics Study on Ga15Se85-xAgx Chalcogenide Glasses by Using Differential Scanning Calorimeter," J. Alloys Compd., 509 [5] 2087-93 (2011). https://doi.org/10.1016/j.jallcom.2010.10.145
  26. N. Mehta, R. S. Tiwari, and A. Kumar, "Glass Forming Ability and Thermal Stability of Some Se-Sb Glassy Alloys," Mater. Res. Bull., 41 [9] 1664-72 (2006) https://doi.org/10.1016/j.materresbull.2006.02.024
  27. A. A. Abu-Sehly and A. S. Soltan, "Optical Properties and Structure of $Ge_{20}Sb_xSe_{80-x}$ Films," Appl. Surf. Sci., 199 [1-4] 147-59 (2002). https://doi.org/10.1016/S0169-4332(02)00604-9
  28. M. A. Abedl-Rahim, A. H. Moharram, M. Dongol, and M. M. Hafiz, "Experimental Studies of the Ge-Sb-Se System," J. Phys. Chem. Solids, 51 [4] 355-59 (1990). https://doi.org/10.1016/0022-3697(90)90119-Z
  29. H. Y. Lee, S. H. Park, J. Y. Chun, and H. B. Chung, "Photoinduced Transformations in Amorphous $Se_{75}Ge_{25}$ Thin Film by XeCl Excimer-Laser Exposure," J. Appl. Phys., 83 [10] 5381 (1998). https://doi.org/10.1063/1.367367
  30. K. Tanaka, "Reversible Photostructural Change: Mechanisms, Properties and Applications," J. Non-Cryst. Solids, 35-36 1023-34 (1980). https://doi.org/10.1016/0022-3093(80)90335-X
  31. N. F. Mott and E. A. Davis, Electron Process in Non-Crystalline Materials; pp. 199-319, 2nd ed., Oxford University Press, New York, 1979.
  32. H. Y. Lee and H. B. Chung, "Low-Energy Focused-Ion-Beam Exposure Characteristics of an Amorphous $Se_{75}Ge_{25}$ Resist," J. Vac. Sci. Technol. B, 15 [4] 818 (1997). https://doi.org/10.1116/1.589491
  33. F. Urbach, "The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids," Phys. Rev., 92, 1324 (1953).
  34. B. Gurbulak, S. Duman, and A. Ates, "The Urbach Tails and Optical Absorption in Layered Semiconductor $TiGaSe_2$ and $TiGaSe_2$ Single Crystal," Czech. J. Phys., 55 [1] 93-103 (2005). https://doi.org/10.1007/s10582-005-0011-4
  35. B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, "Investigation of the Optical and Electronic Properties of $Ge_2Sb_2Te_5$ Phase Change Material in its Amorphous, Cubic, and Hexagonal Phases," J. Appl. Phys., 97, 093509 (2005). https://doi.org/10.1063/1.1884248
  36. H. Y. Lee, J. W. Kim, and H. B. Chung, "Evaluation for the Photo-Induced Changes of Photoluminescence and Optical Energy Gap in Amorphous $Se_{100-x}Ge_x$ (x = 5, 25, and 33) Thin Films," J. Non-Cryst. Solids, 315 [3] 288-96 (2003). https://doi.org/10.1016/S0022-3093(02)01608-3
  37. K. H. Song, S. W. Kim, J. H. Seo, and H. Y. Lee, "Influence of the Additive Ag for Crystallization of Amorphous Ge-Sb-Te Thin Films," Thin Solid Films, 517 [4] 3958-62 (2009). https://doi.org/10.1016/j.tsf.2009.01.128
  38. W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Luther-Davies, "Correlation between Structural and Physical Properties in Ge-Sb-Se Glasses," J. Phys. Chem. C, 117 [32] 16571-76 (2013). https://doi.org/10.1021/jp404001h
  39. Y. Utsugi and Y. Mizushima, "Photostructural Change in the Urbach Tail in Chalcogenide Glasses," J. Appl. Phys., 51, 1773 (1980). https://doi.org/10.1063/1.327738