• Title/Summary/Keyword: Structural parameters

Search Result 4,454, Processing Time 0.032 seconds

A Fourier Series Approximation for Deep-water Waves

  • Shin, JangRyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • Dean (1965) proposed the use of the root mean square error (RMSE) in the dynamic free surface boundary condition (DFSBC) and kinematic free-surface boundary condition (KFSBC) as an error evaluation criterion for wave theories. There are well known wave theories with RMSE more than 1%, such as Airy theory, Stokes theory, Dean's stream function theory, Fenton's theory, and trochodial theory for deep-water waves. However, none of them can be applied for deep-water breaking waves. The purpose of this study is to provide a closed-form solution for deep-water waves with RMSE less than 1% even for breaking waves. This study is based on a previous study (Shin, 2016), and all flow fields were simplified for deep-water waves. For a closed-form solution, all Fourier series coefficients and all related parameters are presented with Newton's polynomials, which were determined by curve fitting data (Shin, 2016). For verification, a wave in Miche's limit was calculated, and, the profiles, velocities, and the accelerations were compared with those of 5th-order Stokes theory. The results give greater velocities and acceleration than 5th-order Stokes theory, and the wavelength depends on the wave height. The results satisfy the Laplace equation, bottom boundary condition (BBC), and KFSBC, while Stokes theory satisfies only the Laplace equation and BBC. RMSE in DFSBC less than 7.25×10-2% was obtained. The series order of the proposed method is three, but the series order of 5th-order Stokes theory is five. Nevertheless, this study provides less RMSE than 5th-order Stokes theory. As a result, the method is suitable for offshore structural design.

Effects of Soil Drought and Waterlogging on Photosystem II Activities in Cercis Bunge (토양 건조 및 침수처리가 박태기나무의 광계 II 활성에 미치는 영향)

  • Lee, K.C.;Lee, U.Y.;Youn, K.K.;Kwon, Y.H.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • This study was conducted to investigate the photosystem II activities of Cercis chinensis by soil water condition. Drought stress was induced by withholding water and waterlogging treatments was immerging the pots for 15 days. Results showed that the relative activities per reaction center such as ABS/RC, TRo/RC and Dio/RC were significantly increased compared with the control group after 12 days in waterlogging treatments. Particularly, Dio/RC increased substantially under waterlogging stress, indicating that excessive energy was consumed by heat dissipation. Furthermore, the performance index on absorption basis(PIabs) and responses to structural and functional PS II(SFIabs) were dramatically decreased after 15 days in both the drought and waterlogging treatments, which reflects the relative reduction state of the photosystem II. These results of chlorophyll a fluorescence by OKJIP analysis show that the sensitive changes photosystem II activity. Thus, on the basis of our results that Cercis chinensis was exhibited a strong reduction of photosynthetic activity to waterlogging stress, and OKJIP parameters such as ABS/RC, DIo/RC, PIabs and SFIabs could be useful indicator to monitor the physiological states of Cercis chinensis under soil water condition.

Effects of Family Function on Depression in Older Adults : The Mediating Effect of Self-Efficacy (고령노인의 가족기능이 우울에 미치는 영향 - 자기효능감의 매개효과 -)

  • Lee, Jong-un;Hoe, Maan-se
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.307-317
    • /
    • 2022
  • The purpose of this study was to examine the mediating effect of self-efficacy in the relationship between perceived family function and depression in the elderly. A self-reported questionnaire was conducted from July 1, 2019 to July 31, 2019, and 296 copies were used for data analysis. For data analysis, frequency analysis, descriptive statistics, and correlation analysis were performed, and a structural equation model was used to verify the effectiveness of parameters. Results, as the main results, first, family function and self-efficacy of the elderly were found to have a negative effect on depression, and it was confirmed that family function had a positive effect on self-efficacy. Second, it was confirmed that there is a mediating effect of self-efficacy between family function and depression in the elderly. Social interventions for improving self-efficacy in the elderly are suggested to be developed in order to reduce depression in the context. A further discussion on this has been presented.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.