• Title/Summary/Keyword: Structural mode

Search Result 2,379, Processing Time 0.033 seconds

Modern reinterpretation and succession of Balenciaga design by Demna Gvasalia (뎀나 바잘리아에 의한 발렌시아가 디자인의 현대적 계승과 재해석)

  • Kim, Jiyoung;An, Hyosun
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.2
    • /
    • pp.185-203
    • /
    • 2021
  • The aim of this study was to reveal the modern succession and reinterpretation of brand identity through the case of Balenciaga design presented by Demna Gvasalia through a review of the literature, design collection, and design review analysis. The design collection analysis was conducted from 2016 F/W to 2020 F/W, when Demna Gvasalia commenced responsibility for the Balenciaga collection. A total of 12 articles from overseas fashion magazines and newspapers were analyzed. A modern reinterpretation of Demna Gvasalia's Balenciaga design is as follows. First, he introduced luxury mode to reflect a sense of the times and introduced luxury street looks based on street and sports sensibilities, showing various styles without specific concepts. Second, by sharing universal sensibilities based on pragmatism, he proposed an easy-to-wear outfit for daily life to demonstrate the everydayness of fashion. Third, as a new exploration of traditional structural beauty, the design of Cristobal Balenciaga was reinterpreted through the conversion of items, overlapping outfits, and the introduction of high-tech technologies. Fourth, by taking a conceptual approach to fashion, he has renewed the spirit of experimentation and modernity shown by Cristobal Balenciaga. Fifth, with the presentation of a new icon, new styles of sneakers such as Triple S and Speed Runner are presented as new icons. He inherited the original mindset and creative approach of the house's founder, Cristobal Balenciaga, and reinterpreted it from a contemporary street sensibility and pragmatic perspective.

A Study on the Buckling Strength of Stern Skeg Shell Plate (선미 스케그 외판의 좌굴강도에 관한 연구)

  • Choi, Kyung-Shin;Seol, Sang-Seok;Kim, Jin-Woo;Kong, Seok-Hwan;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.80-87
    • /
    • 2021
  • Most container ships are currently being constructed as Ultra-Large Container Ships. Hence, the equipment of the ships is also becoming relatively large. In particular, propellers, rudders, and rudder stocks are large in the stern structure, and in relation, efficient design of the hull structures to safely secure these parts is important. The bottom shell plate surface of a stern skeg is a perforated plate from which the rudder stock penetrates, so it is an important component for the stern structure. In this paper, to determine the critical buckling of the shell plate, an interaction curve equation for the two-axis compression of the shell plate was derived using the maximum value of the static structural stress multiplier in a load multiplier mode. This equation predicts the timing of the buckling occurrence. By analyzing this interaction curve equation, the buckling behavior of the plates subjected to a combination load was determined and the usefulness of applying it to ship building was investigated.

A Proposal of Key Management Structure for Providing a Integrated Multicast Service ` (통합 멀티캐스트 서비스 지원을 위한 키 관리 구조 제안)

  • 박희운;이임영
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.6
    • /
    • pp.89-103
    • /
    • 2001
  • Through the increment of requirement for group oriented communication services, the multicast infrastructure based on a wire and wireless network has become a widely discussed researching topic. However the research of the security properties safety, efficiency and scaleability in a multicast structure, has not been enough. In this study, we propose a scalable secure multicast key management structure based on PKI(Public Key Infrastructure), IPSec, domain subgroup and structural two mode scheme to provide a integrated multicast service. Also we discuss and propose the digital nominative group signature a refreshing method for satisfying the security and trusty on the network. At the base of this work we certify to the usability of new proposed scheme from comparing it with conventional schemes in the part of safety, efficiency and scaleability.

The Evaluation of Denoising PET Image Using Self Supervised Noise2Void Learning Training: A Phantom Study (자기 지도 학습훈련 기반의 Noise2Void 네트워크를 이용한 PET 영상의 잡음 제거 평가: 팬텀 실험)

  • Yoon, Seokhwan;Park, Chanrok
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.655-661
    • /
    • 2021
  • Positron emission tomography (PET) images is affected by acquisition time, short acquisition times results in low gamma counts leading to degradation of image quality by statistical noise. Noise2Void(N2V) is self supervised denoising model that is convolutional neural network (CNN) based deep learning. The purpose of this study is to evaluate denoising performance of N2V for PET image with a short acquisition time. The phantom was scanned as a list mode for 10 min using Biograph mCT40 of PET/CT (Siemens Healthcare, Erlangen, Germany). We compared PET images using NEMA image-quality phantom for standard acquisition time (10 min), short acquisition time (2min) and simulated PET image (S2 min). To evaluate performance of N2V, the peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE), structural similarity index (SSIM) and radio-activity recovery coefficient (RC) were used. The PSNR, NRMSE and SSIM for 2 min and S2 min PET images compared to 10min PET image were 30.983, 33.936, 9.954, 7.609 and 0.916, 0.934 respectively. The RC for spheres with S2 min PET image also met European Association of Nuclear Medicine Research Ltd. (EARL) FDG PET accreditation program. We confirmed generated S2 min PET image from N2V deep learning showed improvement results compared to 2 min PET image and The PET images on visual analysis were also comparable between 10 min and S2 min PET images. In conclusion, noisy PET image by means of short acquisition time using N2V denoising network model can be improved image quality without underestimation of radioactivity.

A theoretical study on the irony of alienation of local people by historical local identity (역사적 지역 정체성의 지역민 소외 아이러니에 관한 이론적 고찰)

  • Lee, Dong-Hyeon;Seol, Hye-Lim;Lee, Ji-Hoon;Kim, Young-Jae
    • Journal of architectural history
    • /
    • v.31 no.2
    • /
    • pp.7-18
    • /
    • 2022
  • This study discusses various conflict situations and unexpressed pathological potential in historical regions. In this regard, the issue of alienation of local people due to local identity was raised and the cause was investigated. It explains the structural origins of local alienation that occurred in the process of objectifying a region and forming its identity. The process of alienation of local residents of local identity identified in this paper was divided and explained in three stages: objectification of the region, symbolization of local identity, and religious materialism of local identity. In addition, in the process, the incorporation of the production mode of intellectual work, the separation of producers, and the loss of the subject-centered control ability over these products were pointed out as problematic situations. The study suggests to change the perception of the region and to restore the control of the local people through narrative in relation to this problematic situation. Thus, this thesis asserts that we need to have doubts about the justification for the public good and the basis of the resulting consensus, and that we should be constantly interested in the pathological signs of society around us.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge (다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발)

  • Dong Hun, Heo;Dong Yeol, Hyeon;Sung Cheol, Park;Kwi-Il, Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

Structural resemblance of the DNAJA-family protein, Tid1, to the DNAJB-family Hsp40

  • Jang, Jinhwa;Lee, Sung-Hee;Kang, Dong-Hoon;Sim, Dae-Won;Ryu, Kyung-Suk;Jo, Ku-Sung;Lee, Jinhyuk;Ryu, Hyojung;Kim, Eun-Hee;Won, Hyung-Sik;Kim, Ji-Hun
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.488-493
    • /
    • 2022
  • The specific pair of heat shock protein 70 (Hsp70) and Hsp40 constitutes an essential molecular chaperone system involved in numerous cellular processes, including the proper folding/refolding and transport of proteins. Hsp40 family members are characterized by the presence of a conserved J-domain (JD) that functions as a co-chaperone of Hsp70. Tumorous imaginal disc 1 (Tid1) is a tumor suppressor protein belonging to the DNAJA3 subfamily of Hsp40 and functions as a co-chaperone of the mitochondrial Hsp70, mortalin. In this work, we performed nuclear magnetic resonance spectroscopy to determine the solution structure of JD and its interaction with the glycine/phenylalanine-rich region (GF-motif) of human Tid1. Notably, Tid1-JD, whose conformation was consistent with that of the DNAJB1 JD, appeared to stably interact with its subsequent GF-motif region. Collectively with our sequence analysis, the present results demonstrate that the functional and regulatory mode of Tid1 resembles that of the DNAJB1 subfamily members rather than DNAJA1 or DNAJA2 subfamily proteins. Therefore, it is suggested that an allosteric interaction between mortalin and Tid1 is involved in the mitochondrial Hsp70/Hsp40 chaperone system.

SITM Attacks on Skinny-128-384 and Romulus-N (Skinny-128-384와 Romulus-N의 SITM 공격)

  • Park, Jonghyun;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.807-816
    • /
    • 2022
  • See-In-The-Middle (SITM) is an analysis technique that uses Side-Channel information for differential cryptanalysis. This attack collects unmasked middle-round power traces when implementing block ciphers to select plaintext pairs that satisfy the attacker's differential pattern and utilize them for differential cryptanalysis to recover the key. Romulus, one of the final candidates for the NIST Lightweight Cryptography standardization competition, is based on Tweakable block cipher Skinny-128-384+. In this paper, the SITM attack is applied to Skinny-128-384 implemented with 14-round partial masking. This attack not only increased depth by one round, but also significantly reduced the time/data complexity to 214.93/214.93. Depth refers to the round position of the block cipher that collects the power trace, and it is possible to measure the appropriate number of masking rounds required when applying the masking technique to counter this attack. Furthermore, we extend the attack to Romulus's Nonce-based AE mode Romulus-N, and Tweakey's structural features show that it can attack with less complexity than Skinny-128-384.