• 제목/요약/키워드: Structural foam

검색결과 201건 처리시간 0.023초

파라미터 변화에 따른 석션버켓기초에 발생하는 세굴현상에 대한 수치해석 연구 (Parametric Study on Scouring around Suction Bucket Foundation)

  • 박선호;송성진;왕해청;정태환;신윤섭
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.281-287
    • /
    • 2017
  • In the case of fixed offshore wind turbines, scouring phenomena have been reported around sub-structures as a result of currents, which seriously damage the structural stability. A parametric study of the various sub-structures of a fixed offshore wind turbine was performed to investigate their effects on the scouring phenomena. For a suction bucket foundation and monopile, the effects of the stick-up heights and water depth were studied, respectively. The open source libraries, called OpenFOAM, were used to simulate a violent flow around a foundation. The numerical methods were selected based on a two-dimensional analysis of a suction bucket. Based on the results for various stick-up heights, a larger scouring region was observed with an increase in the stick-up height because of the down-wash flow around a foundation. Based on the results for various monopile water depths, the water depth had an insignificant effect on the scouring.

CFD-DEM 연계기법을 활용한 고정식 해양구조물의 모노파일 주위 유동 및 세굴해석 (Flow and Scour Analysis Around Monopole of Fixed Offshore Platform Using Method that Couples Computational Fluid Dynamics and Discrete Element Method)

  • 송성진;전우영;박선호
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.245-251
    • /
    • 2019
  • When an offshore foundation is exposed to waves and currents, local scour could develop around a pile and even lead to structural failure. Therefore, understanding and predicting the scour due to sediment transport around foundations are important in the engineering design. In this study, the flow and scour around a monopole foundation exposed to a current were investigated using a method that coupled the computational fluid dynamics (CFD) and discrete element method (DEM). The open source computation fluid dynamics library OpenFOAM and a sediment transport library were coupled in the OpenFOAM platform. The incipient motion of the particle was validated. The flow fields and sediment transport around the monopole were simulated. The scour depth development was simulated and compared with existing experimental data. For the upstream scour hole, the equilibrium scour depth could be reproduced qualitatively, and it was underestimated by about 23%.

Design of interlocking masonry units and mechanical properties of masonry assemblages

  • Husema, Metin;Kayaalp, Fatma Birinci
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.97-106
    • /
    • 2019
  • This paper describes the design of a new interlocking masonry system, the production of designed interlocking units and mechanical properties of interlocked masonry assemblages with mortar. In this proposed system, units have horizontal and vertical locks to integrate the units to the wall and have a channel to enable the use of horizontal reinforcements in the wall. Using these units, unfilled, filled or reinforced walls can be constructed with or without mortar. In the production of the interlocking units, it was decided to use foamed concrete. 12 trial productions have been carried out at different mix proportions to obtain the optimum concrete mix. At the end of the mentioned productions, the units were produced with foam concrete which is selected as the most suitable in terms of compressive strength and specific gravity. Then, axial compression, diagonal tension and bed joint shear tests were carried out to determine the mechanical properties of the interlocked masonry assemblages with mortar. Results from the tests showed that interlocks designed to strengthen the system against shear stresses by creating discontinuity throughout the joints have been successful to achieve their aim. Obtained data will enable structural analysis of walls to be constructed with these new units.

Near-explosion protection method of π-section reinforced concrete beam

  • Sun, Qixin;Liu, Chao
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.209-224
    • /
    • 2022
  • In this study, the numerical analysis model of π-beam explosion is established to compare and analyze the failure modes of the π-beam under the action of explosive loads, thus verifying the accuracy of the numerical model. Then, based on the numerical analysis of different protection forms of π beams under explosive loads, the peak pressure of π beam under different protection conditions, the law of structural energy consumption, the damage pattern of the π beam after protection, and the protection efficiency of different protective layers was studied. The testing results indicate that the pressure peak of π beam is relatively small under the combined protection of steel plate and aluminum foam, and the peak value of pressure decays quickly along the beam longitudinal. Besides, as the longitudinal distance increases, the pressure peak attenuates most heavily on the roof's explosion-facing surface. Meanwhile, the combined protective layer has a strong energy consumption capacity, the energy consumed accounts for 90% of the three parts of the π beam (concrete, steel, and protective layer). The damaged area of π beam is relatively small under the combined protection of steel plate and aluminum foam. We also calculate the protection efficiency of π beams under different protection conditions using the maximum spalling area of concrete. The results show that the protective efficiency of the combined protective layer is 45%, demonstrating a relatively good protective ability.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

SAR를 위한 X-band 광대역 배열 안테나의 설계 및 제작 (Design and Fabrication of X-band Wideband Array Antenna for SAR Applications)

  • 원영진;이영주;공영균
    • 한국전자파학회논문지
    • /
    • 제17권2호
    • /
    • pp.184-192
    • /
    • 2006
  • 개구 합성 레이더(SAR)는 지형의 고 해상도의 영상을 획득하는데 주로 사용된다. 본 논문은 X-band 주파수 대역의 차량 탑재형 개구 합성 레이더(automobile-based SAR) 시스템에 적용하기 위한 $16{\times}16$ 배열 안테나의 설계 및 제작에 관한 것이다. 본 논문에서 구현된 안테나는 레이돔, 방사체, 슬롯, 급전 구조 그리고 허니콤과 같은 여러 층의 구조로 되어 있으며 각 층들은 구조적인 그리고 전기적인 측면의 설계 요구 조건들을 만족하기 위하여 결합되어 있다. Strip-Slot-Foam-Inverted-Patch(SSFIP) 구조와 허니콤을 사용하여 넓은 동작 주파수 대역폭과 기구적인 안정성을 만족하였다. 측정 결과와 시뮬레이션 결과를 비교 분석하였으며 본 논문에서 설계한 안테나는 1.7 GHz의 동작 주파수 대역폭과 20 dB 미만의 side-lobe level, 각각 $5^{\circ}$의 빔 폭과 25 dBi의 이득을 가졌으며 측정된 결과는 광대역 SAR 시스템에 적용 가능할 것으로 판단된다.

데크플레이트와 경량성형재가 결합된 중공슬래브의 진동성능에 대한 실물실험 평가 (Evaluation on the Vibration Performance for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam)

  • 조승호;노영숙
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권3호
    • /
    • pp.86-92
    • /
    • 2017
  • 장스팬 구조물은 사용하중 하에서 바닥진동 문제가 발생할 가능성이 크다. 따라서 구조물 바닥판의 진동성능을 향상시키기 위한 가장 일반적인 방법은 슬래브의 두께를 증가시키는 것이지만 기존의 구조시스템에서 슬래브의 두께를 증가시키면 슬래브 자중의 증가로 건축물 전체의 효율성이 떨어지게 되는 문제점이 있다. 따라서 슬래브의 두께를 증가시키면서도 자중은 크게 증가하지 않는 바닥판 시스템으로 중공슬래브에 관한 관심이 커지고 있는 상황이다. 이에 부력방지능력 및 시공성 향상을 위하여 데크플레이트와 경량성형재를 결합한 형태의 중공슬래브를 개발하였고, 이 중공슬래브를 적용한 실물(mock-up) 건축물에 대한 사용성 검증을 위한 진동성능 평가를 수행하였다. 측정된 결과값을 분석한 결과, 일본건축학회의 "건축물의 진동에 관한 거주 성능 평가지침"에 의하면 1등급인 거실, 침실에 사용해도 될 수준으로 평가되었다.

Diabetic Atherosclerosis and Glycation of LDL(Low Density Lipoprotein)

  • Park, Young-June;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • 제1권1호
    • /
    • pp.134-142
    • /
    • 1996
  • Diabetes carries an increased risk of atherosclerotic disease that is not fully explained by known car-diovascular risk factors. There is accumulating evidence that advanced glycation of structural proteins, and oxidation and glycation of circulating lipoproteins, are implicated in the pathogenesis of diabetic ather-osclerosis. Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the ather-ogenic potential of certain plasma constituents, including low density lipoptotein(LDL). Glycation of LDL is significant increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls ; enhanced uptake of LDL by the macrophages, thus stimulating foam cell formation ; increased platelet aggregation; formation of LDL-immune complexes ; and generation of oxygen free radicals, resulting on oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterzied by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation" occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age : in diabetes, their rate of accumulate is accelerated. Inhibition of glycation, oxidation and glycoxidation may form the basis of future antiaterogenic strategies in both diabetic and nondiabetic individuals.dividuals.

  • PDF

두껍고 비대칭인 FRP면재를 갖는 Sandwich 평판의 구조해석 (A Structural Analysis of Sandwich Plate with Unsymmetrical FRP Thick Faces)

  • 김익태;김기성
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.132-140
    • /
    • 1995
  • 선체의 중량을 감소시키기 위한 구조적인 형식중의 하나가 샌드위치 type이고 고속선의 면재는 F.R.P.와 Kevlar/Epoxy를, 심재로는 P.V.C.foam을 많이 사용한다. 본 연구에서는 면재의 두께가 두껍고 윗면재와 아랫면재의 두께가 다른 비대칭인 경우에 대하여 Rayleigh-Ritz의 에너지방법으로 해석하였다. 그리고 얇은 면재와의 비교를 위하여 등방성이고 중립축에 대칭인 평판을 기준하여 굽힘응력, 전단응력, 국부적인 굽힘응력, 막응력효과를 고려한 응력들을 면재2종류와 심재3종류에 대해서 비교하고 해석하였다.

  • PDF

초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구 (A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade)

  • 공창덕;김주일
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF