• Title/Summary/Keyword: Structural design optimization

Search Result 1,621, Processing Time 0.034 seconds

Topology and size optimization of truss structures using an improved crow search algorithm

  • Mashayekhi, Mostafa;Yousefi, Roghayeh
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.779-795
    • /
    • 2021
  • In the recent decades, various optimization algorithms have been considered for the optimization of structures. In this research, a new enhanced algorithm is used for the size and topology optimization of truss structures. This algorithm, which is obtained from the combination of Crow Search Algorithm (CSA) and the Cellular Automata (CA) method, is called CA-CSA method. In the first iteration of the CA-CSA method, some of the best designs of the crow's memory are first selected and then located in the cells of CA. Then, a random cell is selected from CA, and the best design is chosen from the selected cell and its neighborhood; it is considered as a "local superior design" (LSD). In the optimization process, the LSD design is used to modify the CSA method. Numerical examples show that the CA-CSA method is more effective than CSA in the size and topology optimization of the truss structures.

Optimal Design of Structures with Standardized Structural Members (규격부재를 사용한 구조물 최적설계)

  • Yoo, Yung Myun;Lee, Hang Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 1986
  • In this paper research results of developing a method of selecting design variables of an optimization problem from a finite set of pre-specified numbers, which can be utilized for the structural optimization with standardized structural members, is presented. The method first finds a continuous optimum under the assumption that design variables can be varied continuously. Then a pseudo-optimum is determined by selecting numbers from the set that are near to the continuous optimum and do not violate constraints. The pseudo-optimum is further improved to obtain the final discrete optimum from the set which minimizes cost function of the problem. In this research, the method is combined with the gradient projection optimization algorithm. The method is applied to several minimum weight truss optimization problems with constraints on the stresses, displacements, and design variables. As the results, it is found that the method can be efficiently applied to various optimization problems of which design variables must be chosen from a standard.

  • PDF

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

Multidisciplinary Design Optimization of Suspension System for Vibration Reduction of Drum Type Washer (진동저감을 위한 드럼세탁기 현가시스템의 다분야통합최적설계)

  • 이태희;현상학;유홍희;최동훈;전시문;김동원;김영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.429-432
    • /
    • 2004
  • Multidisciplinary design optimization technique is applied to drum type washer in order to minimize the vibration of the cabinet. Dynamic analysis and structural analysis are carried out by using commercial programs to obtain the reliable responses. Analysis models are compared to the experimental responses and finally validated for further design. Two commercial programs are integrated by the design framework EMDIOS that provides interfaces to conveniently link between analyzers and performs design optimization. In this research we could obtain an optimum design that reduces the magnitude of amplitude by about 33% compared with the original design.

  • PDF

Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness (비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO))

  • Do, Jeongyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.26-38
    • /
    • 2020
  • Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.

Barrier Function Method in Reliability Based Design Optimization (장애함수법에 의한 신뢰성기반 최적설계)

  • Lee, Tae-Hee;Choi, Woon-Yong;Kim, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

The Cholesky rank-one update/downdate algorithm for static reanalysis with modifications of support constraints

  • Liu, Haifeng;Zhu, Jihua;Li, Mingming
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.297-302
    • /
    • 2017
  • Structural reanalysis is frequently utilized to reduce the computational cost so that the process of design or optimization can be accelerated. The supports can be regarded as the design variables and may be modified in various types of structural optimization problems. The location, number, and type of supports can make a great impact on the performance of the structure. This paper presents a unified method for structural static reanalysis with imposition or relaxation of some support constraints. The information from the initial analysis has been fully utilized and the computational time can be significantly reduced. Numerical examples are used to validate the effectiveness of the proposed method.

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

Optimization of hybrid composite plates using Tsai-Wu Criteria

  • Mehmet Hanifi Dogru;Ibrahim Gov;Eyup Yeter;Kursad Gov
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • In this study, previously developed algorithm is used for Optimization of hybrid composite plates using Tsai-Wu criteria. For the stress-based Design Optimization problems, Von-Mises stress uses as design variable for isotropic materials. Maximum stress, maximum strain, Tsai Hill, and Tsai-Wu criteria are generally used to determine failure of composite materials. In this study, failure index value is used as design variable in the optimization algorithm and Tsai-Wu criteria is utilized to calculate this value. In the analyses, commonly used design domains according to different hybrid orientations are optimized and results are presented. When the optimization algorithm was applied, 50% material reduction was obtained without exceeding allowable failure index value.