DOI QR코드

DOI QR Code

비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO)

Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness

  • 도정윤 (군산대학교 산학협력단)
  • Do, Jeongyun (Industry-University Cooperation Foundation, Kunsan National University)
  • 투고 : 2020.03.19
  • 심사 : 2020.05.18
  • 발행 : 2020.06.30

초록

자기 충전형 콘크리트의 배합물 설계는 전형적인 다기준의사결정의 과정이다. 본 연구에서는 실험설계법과 반응표면법을 이용하여 SCC 배합물 전산 설계가 가능하도록 재료성능 및 비용모델을 생성하고, 요구조건을 반영한 여러 성능 사이의 상대적 중요도를 산정하여 가중 다목적 설계문제로 정식화하여 수치최적해를 계산함으로써 비용효율을 고려한 SCC최적설계를 수행하였다. 실험비용과 시간을 고려하여 SCC의 수많은 요구성능 중 압축강도, 철근충전성, 재료분리저항성, 비용정보 등을 다목적 최적화의 목적함수로 설정하였다. 재료경제성을 최적재료설계프로세스에 합리적으로 반영함으로써 경제적 콘크리트배합설계를 수행할 수 있었으며, 본 연구 결과 실험점 계획에서부터 최적해 산출에 이르는 과정을 객관적인 프로세스로 구성함으로써 콘크리트 범용 최적재료설계기술 및 전산화를 기대할 수 있다.

Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.

키워드

참고문헌

  1. Ashish, D. K., & Verma, S. K. (2019). An overview on mixture design of self-compacting concrete. Structural Concrete, 20(1), 371-395. doi:10.1002/suco.201700279
  2. Bharatkumar, B., Narayanan, R., Raghuprasad, B., & Ramachandramurthy, D. (2001), Mix proportioning of high performance concrete. Cement and concrete composites, 23(1), 71-80. https://doi.org/10.1016/S0958-9465(00)00071-8
  3. Coello Coello, C. A., & Christiansen, A. D. (1999), MOSES: A multiobjective optimization tool for engineering design. Engineering Optimization, 31(3), 337-368. https://doi.org/10.1080/03052159908941377
  4. Deb, K. (2014), Multi-objective optimization. In Search methodologies (pp. 403-449): Springer.
  5. DeRousseau, M., Kasprzyk, J., & Srubar, W. (2018), Computational design optimization of concrete mixtures: A review. Cement and Concrete Research, 109, 42-53. https://doi.org/10.1016/j.cemconres.2018.04.007
  6. Do, J., & Kim, D. (2012), AHP-based evaluation model for optimal selection process of patching materials for concrete repair: Focused on quantitative requirements. International Journal of Concrete Structures and Materials, 6(2), 87-100. https://doi.org/10.1007/s40069-012-0009-9
  7. Do, J. Kim, D. (2015), Box-willson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete, Journal of Korea Institute for Structural Maintenance and Inspection, 19(5), 92-103. https://doi.org/10.11112/jksmi.2015.19.5.092
  8. Do, J., Kug, S., & K. D. (2017), RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives, Journal of Korea Institute for Structural Maintenance and Inspection, 21(6), 113-125. https://doi.org/10.11112/jksmi.2017.21.6.113
  9. Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005), Engineering design thinking, teaching, and learning. Journal of engineering education, 94(1), 103-120. https://doi.org/10.1002/j.2168-9830.2005.tb00832.x
  10. Fardis, M. N. (2011). Innovative materials and techniques in concrete construction: ACES Workshop: Springer Science & Business Media, 43-58.
  11. General price information(In Korean). 2016(553), Korea Price Information.
  12. Increasing price of flyash along with aggregate(In Korean). (2017.3.7.), Construction Economy.
  13. Islam, M. S., Do, J., & Kim, D. (2018), Multi-Objective Optimization of TMD for Frame Structure Based on Response Surface Methodology and Weighted Desirability Function. KSCE Journal of Civil Engineering, 22(8), 3015-3027. https://doi.org/10.1007/s12205-017-0387-2
  14. Lazic, Z. R. (2006), Design of experiments in chemical engineering: a practical guide: John Wiley & Sons.
  15. Loukili, A. (2013), Self-compacting concrete: John Wiley & Sons.
  16. Mohammed, B. S., Fang, O. C., Anwar Hossain, K. M., & Lachemi, M. (2012), Mix proportioning of concrete containing paper mill residuals using response surface methodology. Construction and Building Materials, 35, 63-68. https://doi.org/10.1016/j.conbuildmat.2012.02.050
  17. Montgomery, D. C. (2017), Design and analysis of experiments: John wiley & sons.
  18. Ozbay, E., Oztas, A., Baykasoglu, A., & Ozbebek, H. (2009), Investigating Mix Proportions Of High Strength Self Compacting Concrete By Using Taguchi Method. Construction and Building Materials, 23(2), 694-702. https://doi.org/10.1016/j.conbuildmat.2008.02.014
  19. Sarma, K. C., & Adeli, H. (2000a), Cost optimization of steel structures. Engineering Optimization+A35, 32(6), 777-802. https://doi.org/10.1080/03052150008941321
  20. Tigiri Neeka, Barisua E. Ngekpe, Godfrey W. T. Jaja,(2019). A New Mix Design Method for Self-Compacting Concrete Based on Close Aggregate Packing Method. SSRG International Journal of Civil Engineering, 6(4), 23-33.