Browse > Article
http://dx.doi.org/10.12989/sem.2021.77.6.779

Topology and size optimization of truss structures using an improved crow search algorithm  

Mashayekhi, Mostafa (Department of Civil Engineering, Vali-e-Asr University of Rafsanjan)
Yousefi, Roghayeh (Department of Civil Engineering, Vali-e-Asr University of Rafsanjan)
Publication Information
Structural Engineering and Mechanics / v.77, no.6, 2021 , pp. 779-795 More about this Journal
Abstract
In the recent decades, various optimization algorithms have been considered for the optimization of structures. In this research, a new enhanced algorithm is used for the size and topology optimization of truss structures. This algorithm, which is obtained from the combination of Crow Search Algorithm (CSA) and the Cellular Automata (CA) method, is called CA-CSA method. In the first iteration of the CA-CSA method, some of the best designs of the crow's memory are first selected and then located in the cells of CA. Then, a random cell is selected from CA, and the best design is chosen from the selected cell and its neighborhood; it is considered as a "local superior design" (LSD). In the optimization process, the LSD design is used to modify the CSA method. Numerical examples show that the CA-CSA method is more effective than CSA in the size and topology optimization of the truss structures.
Keywords
truss structures; size optimization; topology optimization; crow search algorithm; cellular automata method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mashayekhi, M., Salajegheh, E. and Dehghani, M. (2016), "Topology optimization of double and triple layer grid structures using a modified gravitational harmony search algorithm with efficient member grouping strategy", Comput. Struct., 172, 40-58. https://doi.org/10.1016/j.compstruc.2016.05.008.   DOI
2 Mashayekhi, M., Salajegheh, E., Salajegheh, J. and Fadaee, M.J. (2012), "Reliability-Based topology optimization of double layer grids using a two-stage optimization method", Struct. Multidisc. Optim., 45(6), 815-833. https://doi.org/10.1007/s00158-011-0744-6.   DOI
3 Miguel, L.F.F., Lopez, R.H. and Miguel, L.F.F. (2013), "Multimodal size, shape and topology optimization of truss structures using the firefly algorithm", Adv. Eng. Softw., 56, 23-37. https://doi.org/10.1016/j.advengsoft.2012.11.006.   DOI
4 Neumann, J.V. (1966), Theory of Self-Reproducing Automata, University of Illinois Press.
5 Prior, H., Schwarz, A. and Gunturkun, O. (2008), "Mirror-Induced behavior in the magpie (pica pica): evidence of self-recognition", PLOS, Biol., 6(8), e202. https://doi.org/10.1371/journal.pbio.0060202.   DOI
6 Askarzadeh, A. (2016), "A noval metaheuristic method for solving constrained engineering optimization problems: crow search algorithm", Comput. Struct., 169, 1-12. https://doi.org/10.1016/j.compstruc.2016.03.001.   DOI
7 Canyurt, O.E. and Hajela P. (2010), "Cellular genetic algorithm technique for the multicriterion design optimization", Struct. Multidisc. Optim., 40, 201-214. https://doi.org/10.1007/s00158-008-0351-3.   DOI
8 Canyurt, O.E. and Hajela, P. (2005), "A cellular framework for structural analysis and optimization", Comput. Meth. Appl. Mech. Eng., 194, 3516-3534. https://doi.org/10.1016/j.cma.2005.01.014.   DOI
9 Rajasekaran, S. (2001), "Optimization of large scale three dimensional reticulated structures using cellular genetics and neural networks", Int. J. Space Struct., 16, 315-324. https://doi.org/10.1260/026635101760832244.   DOI
10 Rincon, P. (2005), "Science/nature|crows and jays top bird IQ scale", BBC News.
11 Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. (2012), "Mine blast algorithm for optimization of truss structures with discrete variables", Comput. Struct., 102, 49-63. https://doi.org/10.1016/j.compstruc.2012.03.013.   DOI
12 Gholizadeh, S. and Poorhoseini, H. (2015), "Optimum design of steel frame structures by a modified dolphin echolocation algorithm", Struct. Eng. Mech., 55(3), 535-554. http://dx.doi.org/10.12989/sem.2015.55.3.535.   DOI
13 Cheng, M.Y. and Prayogo, D. (2014), "Symbiotic organisms search: A new metaheuristic optimization algorithm", Comput. Struct., 139, 98-112. https://doi.org/10.1016/j.compstruc.2014.03.007.   DOI
14 Deb, K. and Gulati, S. (2001), "Design of truss-structures for minimum weight using genetic algorithms", Finite Elem. Anal. Des., 37, 447-465. https://doi.org/10.1016/S0168-874X(00)00057-3.   DOI
15 Dehghani, M., Mashayekhi, M. and Salajegheh, E. (2016), "Topology optimization of double- and triple-layer grids using a hybrid methodology", Eng. Optim., 48, 1333-1349. https://doi.org/10.1080/0305215X.2015.1105968.   DOI
16 Faramarzi, A. and Afshar, M.H. (2012), "Application of cellular automata to size and topology optimization of truss structures", Sci. Iran., 19(3), 373-380. https://doi.org/10.1016/j.scient.2012.04.009.   DOI
17 Gholizadeh, S. (2013), "Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization", Comput. Struct., 125, 86-99. https://doi.org/10.1016/j.compstruc.2013.04.024.   DOI
18 Gomes, W.J.S., Beck, A.T., Lopez, R.H. and Miguel, L.F.F. (2018), "A probabilistic metric for comparing metaheuristic optimization algorithms", Struct. Saf., 70, 59-70. https://doi.org/10.1016/j.strusafe.2017.10.006.   DOI
19 Hoekstra, A.G., Kroc, J. and Sloot, P.M.A. (2010), Simulating Complex Systems by Cellular Automata, Springer, Berlin.
20 Javidi, A., Salajegheh, E. and Salajegheh, J. (2019), "Enhanced crow search algorithm for optimum design of structures", Appl. Soft. Comput., 77, 274-289. https://doi.org/10.1016/j.asoc.2019.01.026.   DOI
21 Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-98. https://doi.org/10.1016/j.compstruc.2004.01.002.   DOI
22 Souza, R.R., Miguel, L.F.F., Lopez, R.F., Torii, A.J. and Miguel, L.F.F. (2016), "A backtracking search algorithm for the simultaneous size, shape and topology optimization of trusses", Lat. Am. J. Solid. Struct., 13, 2922-2951. http://dx.doi.org/10.1590/1679-78253101.   DOI
23 Ulam, S. (1952), "Random processes and transformations", Proceedings of the International Congress of Mathematics, 2, 85-87.
24 Kaveh, A., Mirzaei, B. and afarvand, A.J. (2015), "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables", Appl. Soft. Comput., 28, 400-410. https://doi.org/10.1016/j.asoc.2014.11.056.   DOI
25 Li, J.P. (2014), "Truss topology optimization using an improved species-conserving genetic algorithm", Eng. Optim., 47(1), 107-128. https://doi.org/10.1080/0305215X.2013.875165.   DOI
26 Li, L.J., Huang, Z.B. and Liu, F. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87, 435-43. https://doi.org/10.1016/j.compstruc.2009.01.004.   DOI
27 Luh, G.C. and Lin, C.Y. (2008), "Optimal design of truss structures using ant algorithm", Struct. Multidisc. Optim., 36, 365-379. https://doi.org/10.1007/s00158-007-0175-6.   DOI
28 Luh, G.C. and Lin, C.Y. (2011), "Optimal design of truss-structures using particle swarm optimization", Comput. Struct., 89, 2221-2232. https://doi.org/10.1016/j.compstruc.2011.08.013.   DOI
29 Kalita, K., Dey, P., Joshi, M. and Haldar, S. (2019), "A response surface modelling approach for multi-objective optimization of composite plates", Steel Compos. Struct., 32(4), 455-466. https://doi.org/10.12989/scs.2019.32.4.455.   DOI
30 Kalita, K., Dey, P., Haldar, S. and Gao, X.Z. (2020a), "Optimizing frequencies of skew composite laminates with metaheuristic algorithms", Eng. Comput., 36, 741-761. https://doi.org/10.1007/s00366-019-00728-x.   DOI
31 Kalita, K., Nasre, P., Dey, P. and Haldar, S. (2018), "Metamodel based multi-objective design optimization of laminated composite plates", Struct. Eng. Mech., 67(3), 301-310. http://dx.doi.org/10.12989/sem.2018.67.3.301.   DOI
32 Kalita, K., Tanmoy, M., Dey, P. and Haldar, S. (2020b), "Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses", Neur. Comput. Appl., 32, 7969-7993. https://doi.org/10.1007/s00521-019-04280-z.   DOI
33 Kaveh, A. and Bakhshpoori, T. (2013), "Optimum design of space trusses using cuckoo search algorithm with levy flights", Iran. J. Sci. Technol. Tran. Civil Eng., 37, 1-15.
34 Kaveh, A. and Khayatazad, M. (2012), "A new meta-heuristic method: ray optimization", Comput. Struct., 112-113, 283-294. https://doi.org/10.1016/j.compstruc.2012.09.003.   DOI
35 Kaveh, A. and Mahdavi, V.R. (2014), "Colliding bodies optimization: a novel meta-heuristic method", Comput. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2012.09.003.   DOI
36 Kaveh, A. and Talatahari, S. (2009), "A particle swarm ant colony optimization for truss structures with discrete variables", J. Constr. Steel Res., 65(8-9), 1558-1568. https://doi.org/10.1016/j.jcsr.2009.04.021.   DOI
37 Kaveh, A. and Zolghadr, A. (2012), "Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability", Comput. Struct., 102-103, 14-27. https://doi.org/10.1016/j.compstruc.2012.03.016.   DOI
38 Kaveh, A. and Talatahari, S. (2010a), "Charged system search with a fly to boundary method for discrete optimum design of truss structures", Asian. J. Civil Eng., 11(3), 229-277.
39 Kaveh, A. and Talatahari, S. (2010b), "Optimum design of skeletal structures using imperialist competitive algorithm", Comput. Struct., 88, 1220-1229. https://doi.org/10.1016/j.compstruc.2010.06.011.   DOI