• Title/Summary/Keyword: Structural defects

Search Result 593, Processing Time 0.022 seconds

Micro-Chemical Structure of Polyaniline Synthesized by Self-Stabilized Dispersion Polymerization

  • NamGoong, Hyun;Woo, Dong-Jin;Lee, Suck-Hyun
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.633-639
    • /
    • 2007
  • A variety of NMR techniques were applied to the micro-chemical structural characterization of polyanilines prepared via an efficient synthetic method in a self-stabilized dispersion medium in which the polymerization was conducted in a heterogeneous organic/aqueous biphasic system without any stabilizers. Here, the monomer and growing polymer chain were shown to function simultaneously as a stabilizer, imparting compatibility for the dispersion of the organic phase, and as a form of flexible template in an aqueous reaction medium. Polymerizations predicated on this concept generated polyanilines with a low defect content: solution state $^{13}C-NMR$ and solid $^{13}CDD/CP/MAS$ spectroscopy indicated that the synthesized HCPANi and its soluble derivative, HCPANi-t-BOC, evidenced distinctly different NMR spectra with fewer side peaks, as compared to conventionally prepared PANis, and the complete structural assignments of the observed NMR peaks could be determined via the combination of both 1D and 2D techniques. Ortho-linked defects in HCPANi were estimated to be as low as 7%, as shown by a comparison of the integration of the carbonyl carbon resonance peaks.

Improvement of Damage Localization Performance for CFRP-debonding defects using Piezo-electric Sensors (압전센서 기반 CFRP 부착면 탈락 손상영역 탐색성능 향상)

  • Kim, Ju-Won;Lee, Chang-Gil;Lee, Dong-Hwan;Chang, Ha-Joo;Park, Seung-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.311-314
    • /
    • 2011
  • 최근 콘크리트 구조물의 안전성강화를 위해 탄소섬유 강화 플라스틱(CFRP) 보강 공법이 널리 사용되고 있지만 잘 알려진 바와 같이 CFRP 보강재와 콘크리트 표면사이의 부착면 탈락은 보강재 자체의 손상보다 발생할 확률이 높고 이러한 부착면 탈락은 보강의 효과를 무의미하게 만들기 때문에 구조물 전체의 파괴로 직결될 수 있다. 이에 본 연구에서는 CFRP 부착면 탈락손상을 실시간으로 검색하기 위해 압전센서를 사용하는 구조물 건전성 평가 기술을 적용하였다. 이의 검증을 위해 CFRP로 보강된 콘크리트 보를 제작하였고 3단계로 증가하는 부착면 탈락 손상을 발생시켰다. 손상 증가 단계마다 CFRP 표면에 배열된 압전센서로부터 임피던스와 유도초음파 신호를 계측하였고 손상에 따른 신호변화를 정량화하기 위해 손상지수인 RMSD를 계산하였다. 더 구체적인 부착면 탈락 손상위치 탐색을 위해서 두 가지 계측 기법으로부터 구해진 RMSD 값를 중첩시키는 Superposed RMSD 가 제안되었다. 구해진 Superposed RMSD 값을 사용하여 커브 피팅이 수행되었고 도출된 커브의 최고값에 해당하는 위치값을 찾아 실제 손상위치와 비교함으로써 제안된 기법의 가능성을 검증해 보았다.

  • PDF

Effect of Cross-Sectional Dimension on the Shrinkage Property of Korean Red-Pine Wood (소나무재의 단면치수에 따른 수축률 특성)

  • Hwang, Kweonhwan;Park, Beyung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • Red pine (Pinus densiflora) has been used for structural wood members of Korean traditional residence (HANOK) and historic wooden structures. For these constructions, generally, natural drying has conducted for long time; however, unless drying is conducted sufficiently, it could cause several drying defects such as check or warping. Shrinkage changes of red pine species for small clear specimens and big-size specimens according to the conditions of moisture contents, were examined. For the estimation of volumetric shrinkage at a special moisture content, it was more precise to divide the range of moisture contents into two groups, green to air-dry and air-dry to oven-dry. The volumetric shrinkage had no difference with specimen sizes in sapwood, but decreased as specimen size increased in heartwood.

Structural Safety Assessment of Independent Spherical LNG Tank(2nd report) - Fatigue Crack Propagation Analysis Based on the LBF Theory - (독립구형 LNG 탱크의 구조안전성 평가(제2보) - LBF 이론에 의한 피로균열 진전해석 -)

  • In-Sik Nho;Yong-Yun Nam;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.74-82
    • /
    • 1993
  • The present paper deals with the structural safety assessment techniques for independent type B spherical LNG tank against fatique crack initiation and propagation, which contains fellowing 3 steps. 1) Prediction of long term distribution of wave induced stresses and fatique crack intiation life using cumulative damage theory which were described at the 1st report. 2) Surface crack propagation analysis to verify that initial defects cannot penetrate tank plate. 3) Passing-through fatigue crack propagation analysis was performed based on LBF(Leak Before Failure ) theory.

  • PDF

A Parametric Study on Bulkhead Plate of Orthotropic Steel Deck Bridge (강바닥판교의 벌크헤드 플레이트에 관한 매개변수 연구)

  • 공병승;김진만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.333-339
    • /
    • 2003
  • Recently, the bridges become greater according to development of a construction technology. This phenomenon requires long span bridge, so that increases the dead weight. The orthotropic steel deck bridges have much advantages such as the light dead weight and the reduction of construction period. And almost whole process of carried out is manufactured at factory, so it can cause the increase of quality authoritativeness. But orthotropic steel deck bridge is consist of structure by welding, it can not avoid a lot of welding jobs, defects and transformation by welding are becoming problem accordingly. Specially, topical stress concentration phenomenon in cross connection area of longitudinal and transverse rib causes fatigue failure. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This treatise with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and tile cross-connection area of longitudinal and transverse rib.

  • PDF

FINITE ELEMENT METHOD - AN EFFECTIVE TOOL FOR ANALYSIS OF SHELL

  • Park, Chang-Koon;Lee, Tae-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.3-17
    • /
    • 2003
  • This paper deals with the problems and their possible solutions in the development of finite element for analysis of shell. Based on these solution schemes, a series of flat shell elements are established which show no signs of membrane locking and other defects even though the coarse meshes are used. In the element formulation, non-conforming displacement modes are extensively used for improvement of element behaviors. A number of numerical tests are performed to prove the validity of the solutions to the problems involved in establishing a series of high performance flat shell elements. The test results reveal among others that the high accuracy and fast convergence characteristics of the elements are obtainable by the use of various non-conforming modes and that the ‘Direct Modification Method’ is a very useful tool for non-conforming elements to pass the patch tests. Furthermore, hierarchical and higher order non-conforming modes are proved to be very efficient not only to make an element insensitive to the mesh distortion but also to remove the membrane locking. Some numerical examples are solved to demonstrate the validity and applicability of the presented elements to practical engineering shell problems.

  • PDF

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

Design Alterations of a Semiconductor Wafer Edge Grinder for the Improved Stability (반도체 Wafer용 Edge Grinding Machine의 구조 안정화를 위한 설계 개선)

  • Park, Yu Ra;Ro, Seung Hoon;Kim, Young Jo;Kil, Sa Geun;Kim, Geon Hyeong;Shin, Yun Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.56-64
    • /
    • 2016
  • It is generally accepted that the surface quality of wafer edge is mostly damaged by the vibrations of the edge grinding machine. The surface quality of wafer edge is supposed to be the most dominant factor of the cracks, scratches, burrs and chips on the edge surfaces, which are the main defects of the wafers. In this study, the structure of a wafer edge grinder has been investigated through the frequency response experiment and the computer simulation to find ways to suppress the vibrations from the structure. The main reasons of the structural vibrations were analyzed. And further the design alterations were deduced from the results of the experiment and the simulation, and applied to the machine to check the effects of those alterations and to eventually improve the structural stability. The result shows that the machine can have much improved stability with relatively simple design changes.

A Development of the Trapped Water Drainage System to Prevent the Deterioration of Deck Slab and Pavement (교면포장 및 바닥판 손상방지를 위한 내부침투수 처리시스템 개발)

  • Lee, Sang-Dal;Lee, Sang-Soon;Shin, Jae-In;Seo, Sang-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.233-239
    • /
    • 2002
  • Reinforced concrete deck slabs are directly affected by traffic loads and they are also susceptible to weather-related problems, such as cracking, reinforcement corrosion, spatting, scaling, delamination, leakage, efflorescence and so on. Some of these defects are caused by water which seeps through pavements and trapped between pavements and deck slabs. For durability of reinforced concrete deck slabs and pavements, it is very important to protect deck slabs and drain the trapped water out. To develop the trapped water drainage system, the following studies have been performed in Korea Highway Cooperation: related researches a re reviewed; for six bridges, deck slabs are thoroughly investigated; new system to effectively drain the trapped water out is proposed; the proposed system is installed and evaluated. The proposed system is proved to be effective to drain the trapped water out and is expected to increase the durability of reinforced concrete deck slabs.

A Fatigue Analysis Study on the Fractured Fixing Bolts of Mobile Elevated Work Platforms (고소작업대의 파손된 고정볼트의 피로분석에 관한 연구)

  • Choi, Dong Hoon;Kim, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • The mobile elevated work platforms(MEWPs) consist of work platform, extending structure, and car, and it is a facility to move persons to working positions. MEWPs are useful but composed complex pieces of equipments, and accidents are caused by equipment defects. Among them, accidents caused by fracture of the bolts fixing the extension structure and the turntable are increasing. In this study, fatigue failure and fatigue life of a turntable fixing bolt subjected to irregular fatigue load were analyzed by FEA. For this purpose, finite element modeling is proposed and structural analysis and fatigue analysis are performed simultaneously for fixing bolts. As a result of the structural analysis, it was confirmed that there is no risk of permanent deformation because the maximum stress acting on the fixing bolt is lower than the yield strength, and fatigue analysis was confirmed that the fatigue life is less than the design standard. The fatigue analysis results of this study can be effectively used for the design and the documentary assessment of the safety certification of the MEWPs by examining the fatigue life of the turntable fixing bolt.