• Title/Summary/Keyword: Structural Welding Steel

Search Result 329, Processing Time 0.024 seconds

Effects of TiN and B on Grain Refinement of HAZ Microstructure and Improvement of Mechanical Properties of High-strength Structural Steel Under High Heat Input Welding (고강도 구조용 철강소재의 대입열 용접 시 열영향부의 조직 미세화 및 기계적 특성 향상에 미치는 TiN 및 B의 효과)

  • Park, Jin-seong;Hwang, Joong-Ki;Cho, Jae Young;Han, Il Wook;Lee, Man Jae;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the ${\gamma}$ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.

Evaluation of the Applicability of Structural Steels to Cold Regions by the Charpy Impact Test (샤르피 충격시험을 통한 구조용강재의 극한지 적용성 검토)

  • Lee, Chin-Hyung;Shin, Hyun-Seop;Park, Ki-Tae;Yang, Seunng-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.483-491
    • /
    • 2011
  • The fabrication of steel structural members always involves welding process such as flux cored arc welding. Therefore, for the application of structural steels to cold regions, it is a prerequisite to clarify the service temperature of the welded joints in order to ensure the structural integrity of the welded parts. In this study, the Charpy impact test was conducted to evaluate the service temperature of structural steel weld. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The service temperatures of the weld metal, HAZ (heat affected zone) and base metal were derived by the absorbed energy and the impact test requirements; thus the applicability of the structural steels to cold regions was discussed in detail.

Fatigue Crack Propagation Life of Partially Penetrated Butt Welds in High Strength Steel (고장력 강판 부분용입 맞대기 용접부의 피로균열진전수명 평가)

  • Han, Seung-Ho;Shin, Byung-Chun;Lee, Woong;Choi, Jeon-Ho
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • Fatigue behaviour of partially penetrated butt-welded joints in high strength steel plates, in which crack-like structural defect, i.e. lack of penetration(LOP), is inevitably introduced during welding processes, was investigated. Fatigue lives of two types of welded joints, namely X-grooved and K-grooved joints, were experimentally determined first. Observed fatigue crack propagation behaviours of the partially penetrated butt-welds were interpreted through considering 3-dimensional semi-elliptical crack shape in front of the LOP. Based on such interpretation, a fracture mechanical method to estimate stress intensity factors at the crack tip was proposed. Since the fatigue lift of the partially penetrated butt-welds was strongly influenced by the ratio of size of the LOP to thickness, D/t, the D/t was used as a main parameter to calculate the fatigue lift by using the proposed method. Comparison of the fatigue lift obtained experimentally and analytically agreed well with each other. Hence it is suggested that the method used in this work to predict fatigue lift of the partially penetrated butt-welds can be applied to real cases with improved lift-prediction capability.

Compressive Strength of Diagrid Node Using H-Shape Steel (H현강 Diagrid 접합부의 압축내력 단가)

  • Ju, Young-Kyu;Park, Soon-Jeon;Kim, Kyoung-Hwan;Chang, In-Hwa;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2008
  • As number of the buildings increases, it shows new trends such as twisted, tilted, taperer shape. As a structural solution for the new trend buildings, diagonal grid (Diagrid) structure was developed. Though a few buildings was built using diagird system, the structural performance of the corresponding node was not clearly identified. Therefore, experimental evaluation is needed to apply diagrid for higher buildings. In this study, the node was tested depending on the amounts of welding materials. As a result, the partial welding can provide enough strength for the node as required in the full penetration welding under monotonin compressive loadings.

  • PDF

Study on Underwater Welding ( Report 1 ) - Its Weldability -

  • 남기우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 1983
  • Recently, many studies for developing the underwater welding techniques have been carried out in the advanced countries as a manufacturing process and a repairing method according as a great deal of interest in development for various marine industrial fields has been gradually increased. But no study on such underwater welding is available at present in our country. In this study, underwater welding was carried out for welding of domestic structural steel plates (SM41A) of 10 mm thickness, using six types of domestic coated arc welding electrodes on a self-made gravity type underwater welding device, resulting in investigation for the underwater weldability of the domestic structural steel plates as well as for the underwater welding properties and practicability of the domestic welding electrodes.

  • PDF

Reinforcing Method for Steel Pile Head connection in RC footing (분할된 원호판을 이용한 강관두부보강법에 관한 연구)

  • Noh, Sam-Young;Kim, Kwang-Mo;Han, Seok-Hee;Min, In-Gi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.476-485
    • /
    • 2006
  • The connection system of steel pile and RC footing is an important structure, because the total load of upper construction should be transferred through this joint construction of different two materials-steel and RC-with strongly changed section area. Although many connection systems have been developed, their structural and economical efficiency and workability are often insufficient. Therefore, a new connecting system was developed to improve the problems of current systems. The divided arc plate could improve the workability and economical efficiency, structural efficiency could be reached by welding construction. The main purpose of the research is to evaluate the structural behavior of the new designed connection system through experiments and numerical analysis.

  • PDF

Characterization of residual stress distribution of thick steel weld by contour method (굴곡측정법을 이용한 극후판 용접부 잔류응력분포 정량분석)

  • Kim, Dong-Kyu;Woo, Wanchuck;Kang, Youn-Hee
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • Residual stresses arising from the materials processing such as welding and joining affect significantly the structural integrity depending on the external loading condition. The quantitative measurement of the residual stresses is of great importance in order to characterize the effects of the residual stresses on the structural safety. In this paper, we introduce a newly devised destructive technique, the contour method (CM), which is applied for the measurements of the residual stress distributions through the thickness of a 80 mm thick steel weld. Residual stresses are evaluated from the contour, which is the normal displacement on a cut surface produced by the relaxation of residual stresses, using a finite element model. The CM provides a two-dimensional map of the residual stresses normal to the cut surface. The CM developed in the present study was validated in comparison with the residual stress distribution determined by a well-established neutron-diffraction residual stress instrument (RSI) instrumented in HANARO neutron research reactor.

Development of Inconel for Marine Structural Steel by FCAW Process (해양 구조용 인코넬강의 FCAW 용접의 최적기술 개발)

  • PARK KEYUNG-DONG;JIN YOUNG-BEOM;AN DO-KEYUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to aver $1090^{\circ}C$, in combination with good law- and high temperature mechanical strength. Rencently, this material is also used widely in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgical characterictics or the unavailability of matching, position or suitable welding processes. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. in this study, the weldability and weldment characteristics (mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases($80\%Ar\;+\;20\%CO_2,\;50\%Ar+50CO_2,\;100CO_2$) in viewpoint of welding productivity.

  • PDF

A Statistical Analysis on the Mechanical Properties of Structural Welding Steels (용접구조용강재의 기계적 성질에 관한 통계적 분석)

  • Chang, Dong-Il;Kyung, Kab-Soo;Hong, Sung-Wook;Nam, Wang-Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.281-290
    • /
    • 2000
  • In this study, we have quantitatively estimated the mechanical properties of structural welding steels widely used in steel structures after correcting the millsheets of the steels using statistical technique. From this result, in present, the mechanical properties of the steels produced in domestics have satisfied the prescribed values in Korean Standards. The mechanical properties of the steels were dependent upon the plate thickness & class of the steels. Also, there have been linear relations between the plate thickness & class of the steels and the mechanical properties of the steels. And the results of this study have shown the similar tendencies with the existing results. Because the upper limit value of yield strength is not prescribed at Korean Standards in present, it is necessary to prescribe the upper limit value of yielding ratio(or yield strength) in order to assure the deformation performance of the steels.

  • PDF