• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.036 seconds

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Shape Optimization of an Air-conditioner Compressor Mounting Bracket (차량용 에어컨 컴프레서 브라켓의 형상최적화)

  • 제형호;김찬묵;강영규;이두호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.389-394
    • /
    • 2003
  • In this paper, a shape optimization technique is applied to design of an air-conditioner mounting bracket. The mounting bracket is a structural component of an engine, on which bolts attach an air-conditioner compressor. The air-conditioner mounting bracket has a large portion of weight among the engine components. To reduce weight of the bracket, the shape is optimized using a finite element software. The compressor assembly, composed of a compressor and a bracket is modeled using finite elements. An objective function for the shape optimization of the bracket is the weight of the bracket. Two design constraints on the bracket are the first resonant frequency of the compressor assembly and the fatigue life of the bracket. The design variables are the shape of the bracket including thickness profiles of the front and back surfaces of the bracket, radius of outer bolt-holes, and side edge profiles. The coordinates of the FE nodes control the shape parameters. Optimal shapes of the bracket are obtained by using SOL200 of MSC/NASTRAN.

  • PDF

Floor Impact Noise Reduction Performance of Double-Floor System in Apartments (공동주택 이중바닥구조의 바닥충격음 저감성능)

  • Baek, Gil-Ok;Park, Hong-Gun;Mun, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.197-202
    • /
    • 2014
  • Floor Impact Noise is a structure-borne noise which is mainly caused by vibration of concrete slabs. The majority of previous studies have focused on investigating performance of absorbing sheets on the reduction of floor impact noise. But absorbing sheets do not efficiently reduce heavy-weight floor impact noise level because it cannot absorb slab vibration, which is the fundamental noise source. In this study, double-floor system was developed in order to reduce floor impact noise level in residual buildings. This floor system reduces heavy-weight impact noise level by reducing vibration response at the center of slab, which has maximum amplitude in the 1st vibration mode. In order to identify the performance of the double-floor system, experiments were planned. Primary test parameters are span of double floor, arrangement and types of absorbing sheets.

  • PDF

Structural and Physiological Characteristics of Rhamnogalacturonan II from Fruit Wines

  • Park, So-Yeon;Shin, Kwang-Soon
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.270-274
    • /
    • 2007
  • To characterize the polysaccharides which exist as soluble forms in fruit wines, crude polysaccharides were isolated from red, white, raspberry, wild grape, and pear wine, respectively. Among them, the crude polysaccharide (RW-0) in red wine showed the highest yield and considerable amounts of thiobarbituric acid (TBA)-positive materials. The pectic polysaccharide RW-2 was purified to homogeneity from RW-0 by subsequent size-exclusion chromatography using Sephadex G-75 and its structure was characterized. RW-2 consisted of 14 different monosaccharides which included rarely observed sugars in general polysaccharides, such as 2-O-methyl-fucose, 2-O-methyl-xylose, apiose (Api), 3-C-carboxy-5-deoxy-L-xylose (aceric acid, AceA), 3-deoxy-D-manno-2-octulosonic acid (Kdo), and 3-deoxy-D-lyxo-2-heptulosaric acid (Dha). Methylation analysis indicated that RW-2 comprised at least 20 different glycosyl linkages such as 3,4-linked fucose, 2,3,4-linked rhamnose, 3'-linked apiose, and 2,3,3'-linked apiose, being characteristic in rhamnogalacturonan II (RG-II). High performance size-exclusion chromatography indicated that RW-2 mainly comprised RG-II of higher molecular weight (12,000), and that the changes of molecular weight to apparent 7,000 under less than pH 2.0 were observed. These analyses indicated that the higher molecular weight polysaccharide in RW-2 was mainly present as a RG-II dimer.

Minimum Weight Design for Watertight and Deep Tank Corrugated Bulkhead (수밀 및 디프탱크 파형 격벽의 최소중량설계)

  • 신상훈;남성길
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.12-19
    • /
    • 2003
  • Corrugated bulkheads for a bulk carrier are divided into watertight bulkheads and deep tank bulkheads. Design of the watertight bulkheads is principally determined by the permissible limit of Classification and IACS requirements. But, the verification of strength through finite element analysis is indispensable for design of the deep tank bulkheads. A stage for stress evaluation of corrugated part is required for optimum structural design of the deep tank bulkheads. Since the finite element analysis for real model requires excessive amount of calculation time, in this study one corrugated structure is replaced with beam element and is idealized as 2 dimensional frame structure connected to upper and lower stool Minimum weight design of the deep tank bulkheads is performed through generalized sloped deflection method(GSDM) as direct calculation method. The purpose of this study is the development of design system for the minimization of steel weight of deep tank bulkheads as well as watertight bulkheads. Discrete variables are used as design variables for the practical design. Evolution strategies(ES) is used as an optimization technique.

Structural Features of Enzymatic Hydrolysate of Porphyran Isolated from Porphyra yezoensis (방사무늬김(Porphyra yezoensis)에서 추출한 Porphyran 효소 분해물의 화학적 결합 특성)

  • Park, Jin-Hee;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.630-634
    • /
    • 2011
  • Enzymatic hydrolysate of porphyran from Porphyra yezoensis was prepared by treatment with ${\beta}$-agarase. The hydrolysate was fractioned into molecular sizes of <3, 3-30, and 30-300 kDa using an ultrafiltration membrane. The membrane fractions were further separated into neutral and anionic fractions using Dowex $1{\times}8$ ion exchange chromatography. After hydrolysis of porphyran with ${\beta}$-agarase, 23.2% of the starting porphyran was recovered as a neutral fraction of low-molecular weight (<3 kDa), and 28.9% remained as an enzyme-resistant anionic fraction of high molecular weight (>300 kDa). Desulfation of porphyran and $^{13}C$-NMR analysis of the anionic fraction of low molecular weight (<3 kDa) showed that the anionic fraction has a backbone consisting of 3-linked ${\beta}$-D-galactose units alternating with either 4-linked a-L-galactose 6-sulfate or 3, 6-anhydro-a-L-galactose units. These results indicate that porphryan is a copolymer of two moieties, about 25% of which are composed of neoagarose moieties and 75% as anionic moieties.

The effects of construction related costs on the optimization of steel frames

  • Choi, Byoung-Han;Gupta, Abhinav;Baugh, John W. Jr.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.31-51
    • /
    • 2012
  • This paper presents a computational study that explores the design of rigid steel frames by considering construction related costs. More specifically, two different aspects are investigated in this study focusing on the effects of (a) reducing the number of labor intensive rigid connections within a frame of given geometric layout, and (b) reducing the number of different member section types used in the frame. A genetic algorithm based optimization framework searches design space for these objectives. Unlike some studies that express connection cost as a factor of the entire frame weight, here connections and their associated cost factors are explicitly represented at the member level to evaluate the cost of connections associated with each beam. In addition, because variety in member section types can drive up construction related costs, its effects are evaluated implicitly by generating curves that show the trade off between cost and different numbers of section types used within the frame. Our results show that designs in which all connections are considered to be rigid can be excessively conservative: rigid connections can often be eliminated without any appreciable increase in frame weight, resulting in a reduction in overall cost. Eliminating additional rigid connections leads to further reductions in cost, even as frame weight increases, up to a certain point. These complex relationships between overall cost, rigid connections, and member section types are presented for a representative five-story steel frame.

Purification and Characterization of a Thermostable Laccase from Trametes trogii and Its Ability in Modification of Kraft Lignin

  • Ai, Ming-Qiang;Wang, Fang-Fang;Huang, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1361-1370
    • /
    • 2015
  • A blue laccase was purified from a white rot fungus of Trametes trogii, which was a monomeric protein of 64 kDa as determined by SDS-PAGE. The enzyme acted optimally at a pH of 2.2 to 4.5 and a temperature of 70℃ and showed high thermal stability, with a half-life of 1.6 h at 60℃. A broad range of substrates, including the non-phenolic azo dye methyl red, was oxidized by the laccase, and the laccase exhibited high affinity towards ABTS and syringaldazine. Moreover, the laccase was fairly metal-tolerant. A high-molecular-weight kraft lignin was effectively polymerized by the laccase, with a maximum of 6.4-fold increase in weight-average molecular weight, as demonstrated by gel permeation chromatography. Notable structural changes in the polymerized lignin were detected by Fourier transform infrared spectroscopy and 1H NMR spectroscopy. This revealed an increase in condensed structures as well as carbonyl and aliphatic hydroxyl groups. Simultaneously, phenolic hydroxyl and methoxy groups decreased. These results suggested the potential use of the laccase in lignin modification.

A Study on the Elevator Overbalance-Ratio Control and Improved Scheme for Safety (엘리베이터 오버밸런스율 제어와 안전을 위한 개선방안 연구)

  • Lee, Ho-Cheol;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2785-2792
    • /
    • 2013
  • An elevator is driven by the friction between the pulley and wire rope. A balancing counter weight is connected to the elevator car with a wire rope. This structure is essential to drive elevators while it always has weight unbalance problems on each side. The overbalance-ratio of elevators may be an important factor for safety and structural efficiency; however, it is not yet clearly defined in the Requirements of Korea Elevator Inspection. This paper describes these "weight unbalance ratio" for control of elevators to reduce the number of accidents. It includes the analysis of current elevator maintenance situations and also proposes some fundamental improvement schemes for safety.

Optimum Design of Pin Jig to Control Ascent and Descent Offshore Structure Work Table for Weight Reduction (해양구조물 작업대 승하강 조절용 핀지그의 경량화를 위한 최적설계)

  • Hong D.K.;Woo B.C.;Choi S.C.;Park I.S.;Ahn C.W.;Han G.J.;Kang H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1051-1054
    • /
    • 2005
  • On this study, we optimized minimizing the characteristic function for mixed result of the structural contact analysis and the buckling analysis according to the pin jig initial model's level change using mixed the table of orthogonal away and ANOM, Pin jig's weight is reduced up to 20 percent considering constraint conditions. Also we optimized reducing 20 percent weight of pin jig model using topology optimization.

  • PDF