• Title/Summary/Keyword: Structural Reanalysis

Search Result 83, Processing Time 0.02 seconds

Structural Dynamics Modification via Reorientation of Modification Elements (구조물의 결합 위치 변경을 통한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.666-669
    • /
    • 2004
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. For effective structural modification the eigenvalue sensitivity with respect to that design parameter is derived based on measured frequency response function. The optimal structural modification is calculated by combining eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Numerical examples are presented to the case of beam stiffener optimization to raise the natural frequency of plate.

  • PDF

Multi-Level and Multi-Objective Optimization of Framed Structures Using Automatic Differentiation (자동미분을 이용한 뼈대구조의 다단계 다목적 최적설계)

  • Cho, Hyo-Nam;Min, Dae-Hong;Lee, Kwang-Min;Kim, Hoan-Kee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.177-186
    • /
    • 2000
  • An improved multi-level(IML) optimization algorithm using automatic differentiation (AD) for multi-objective optimum design of framed structures is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed algorithm, multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses such as moments, frequencies, and strain energy with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by AD that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. The efficiency and robustness of the IML algorithm, compared with a plain multi-level (PML) algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties (동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Multi-Level Optimization for Steel Frames using Discrete Variables (이산형 변수를 이용한 뼈대구조물의 다단계 최적설계)

  • 조효남;민대용;박준용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.115-124
    • /
    • 2000
  • An efficient multi-level (EML) optimization algorithm using discrete variables of framed structures is proposed in this paper. For the efficiency of the proposed algorithm multi-level optimization techniques using a decomposition method that separates both system-level and element-level are incorporated in the algorithm In the system-level, to save the numerical efforts an efficient reanalysis technique through approximated structural responses such as moments and frequencies with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by automatic differentiation (AD) that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. In the element-level, to use AISC W-sections a section search algorithm is introduced. The efficiency and robustness of the EML algorithm, compared with a conventional multi-level (CML) algorithm and single-level genetic algorithm is successfully demonstrated in the numerical examples.

  • PDF

A Sensitivity Coefficient Analysis by the Change of Dynamic Characteristics of the Structure (구조물의 동특성 변화에 따른 감도계수 해석)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.682-686
    • /
    • 2002
  • This study predicts the sensitivity coefficient by the change of dynamic Characteristics of the Structure. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifying the mass and stiffness. The predicted the sensitivity coefficient are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

  • PDF

Crack Detection in Beam using Sensitivity Coefficient of Modal Data (모달 데이터의 감도계수를 이용하여 보의 균열 탐지)

  • Lee, Jung Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.950-956
    • /
    • 2013
  • This paper describes a sensitivity-coefficient-based iterative method for detecting cracks in a structure. The sensitivity coefficients of a cracked structure are obtained by changing its eigenvectors. The proposed method is applied to a cracked cantilever. The crack is modeled as a rotational stiffness. The predicted cracks are in good agreement with those from a structural reanalysis of the cracked structure.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

Analysis of Design Parameter of Structural Modification using Change of Dynamic Characteristics (동특성 변화로부터 구조물의 변경된 설계파라미터 해석)

  • Oh Jae-Eung;Lee Jung-Woo;Lee Jung-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.387-392
    • /
    • 2006
  • This paper predicts the modified mass and stiffness of structure using the sensitivity coefficients with the iterative method. The sensitivity coefficients are obtained by the change of the eigenvectors according to structural modification. The method is applied to an examples of a 3 degree of freedom system by modifying mass and stiffness. The predicted mass and stiffness are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

Trends in the Climate Change of Surface Temperature using Structural Time Series Model (구조적 시계열 모형을 이용한 기온 자료에 대한 기후변화 추세 분석)

  • Lee, Jeong-Hyeong;Sohn, Keon-Tae
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.199-206
    • /
    • 2008
  • This study employs a structural time series method in order to model and estimate stochastic trend of surface temperatures of the globe, Northern Hemisphere, and Northeast Asia ($20^{\circ}N{\sim}60^{\circ}N$, $100^{\circ}E{\sim}150^{\circ}E$). For this study the reanalysis data CRUTEM3 (CRU/Hadley Centre gridded land-surface air temperature Version 3) is used. The results show that in these three regions range from $0.268^{\circ}C$ to $0.336^{\circ}C$ in 1997, whereas these vary from $0.423^{\circ}C$ to $0.583^{\circ}C$ in 2007. The annual mean temperature over Northeast Asia has increased by $0.031^{\circ}C$ in 2007 compared to 1997. The climate change in surface temperatures over Northeast Asia is slightly higher than that over the Northern Hemisphere.

Vibration Analysis of Network Communication Equipment (네트워크 통신장비의 진동 해석)

  • Lee Jae-Hwan;Kim Jin-Sup;Kim Young-Jung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.467-472
    • /
    • 2006
  • The purpose of this paper is to check the structural safety of the network equipments by performing the static and dynamic finite element analysis. The stress and displacement of structures under static loading condition are evaluated to check whether satisfying the design requirement conditions. Since the computed natural frequencies are similar to the results of experiment. the model could be used for the response spectrum analysis where experimental acceleration value at each frequency are used as seismic input excitation. It is shown that the analysis results are a little bit larger than that of the experimental values. Also sensitivity analysis and optimization for the natural frequency are performed and it is found that the first natural frequency is very sensitive to the stiffness of the equipment.

  • PDF