• Title/Summary/Keyword: Structural Probe

Search Result 198, Processing Time 0.036 seconds

Precision-structural Design for Scanning Probe Microscopes (주사탐침현미경을 위한 정밀 구조 설계)

  • Lee, Moo-Yeon;Shim, Jae-Sool;Lee, Dong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4095-4099
    • /
    • 2010
  • Nano-measurement systems such as scanning probe microscopes should be protected against external disturbances. For the design of a scanning probe microscope, the external vibrations need to be characterized and the vibrational properties of the structural frame itself should be modeled. Also, the influences of the external vibration on the apparatus need to be known for its utmost precision. In this paper, the combined vibrational-characteristics of the floor and the structural frame are analyzed and experimentally investigated.

Ultrasonic Sensors for Steel Structure Inspection (강구조물(鋼構造物) 진단(診斷)을 위한 초음파(超音波) 센서)

  • Shin, Byoung-Churl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • The team mixed PbO, $ZrO_2$, $TiO_2$, $Nb_2O_5$ and $MnCO_3$, to make $Pb[(Zr_{0.54}\;Ti_{0.46})\;Nb_{0.005}]O_3+4%MnCO_3$. The electroded PZT ceramics were poled by 3 kV/mm at $110^{\circ}C$ for 600 s. We assembled the 0.4mm thick PZT slices into ultrasonic transducers. Central frequency of the probe is 5 MHz, which is proper to the thickness gauge for steel pipes and for flaw detector. The probe can detect a disk shape defect of 1mm diameter at 15cm deep in steel block. The new probe's Fresnel zone that the ultrasonic beam do not broaden is 13mm. Over the Fresnel zone, the ultrasonic beam spreads. Half of the beam spread angle of the probe is $4.3^{\circ}-4.6^{\circ}$. This probe can be used for the ultrasonic transducers for non-destructive testing of steel bridges.

  • PDF

Assessment of Design and Mechanical Characteristics of MEMS Probe Tip with Fine Pitch (미세 피치를 갖는 MEMS 프로브 팁의 설계 및 기계적 특성 평가)

  • Ha, Seok-Jae;Kim, Dong-Woo;Shin, Bong-Cheol;Cho, Myeong-Woo;Han, Chung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1210-1215
    • /
    • 2010
  • The probe card are test modules which are to classify the good semiconductor chips and thin film before the packaging process. In the rapid growth a technology of semiconductor, the number of pads per unit area is increasing and pad arrays are becoming irregular. Therefore, the technology of probe card needs narrow width and lots of probe tip. In this paper, the probe tip based on the MEMS(Micro Electro Mechanical System)technology was developed a new MEMS probe tip for vertical probe card applications. For the structural designs of probe tip were performed to mechanical characteristics and structural analysis using FEM(Finite Element Method). Also, the contact force of MEMS probe tip compared with FEM results and experimental results. Finally, the MEMS probe card was developed a fine pitch smaller than $50{\mu}m$.

Structural Strain Measurement Technique Using a Fiber Optic OTDR Sensor (광섬유 OTDR 센서에 의한 구조물의 변형률 측정 방법)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.388-399
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural strain measurement. The sensing fibers are manufactured 3 kinds of fibers: one is single mode fiber, and second is multimode fiber, and the third is low-cladding-index fiber. Fiber bending tests are performed to determine the strain sensitivity according to the strain of gage length of optical fibers. In the result of this experiments, the strain sensitivity of the single mode fiber was shown the highest value than others. The fiber optic strain probe was manufactured to verify the feasibility of the structural strain measurement. In this test, the fiber optic strain probe of the OTDR sensor could be easily made by the single mode fiber.

  • PDF

A Study on the Development of the CMM Probe using Force-Sensor (힘 센서를 이용한 CMM용 프로브 개발을 위한 연구)

  • 송광석;권기환;박재준;조남규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.411-415
    • /
    • 2002
  • In this paper, a mechanical probe for CMM (Coordinate Measuring Machine) with a three-axis force-sensing unit is proposed, which is capable of measuring an actual contact position without the lobbing effect and the pre-travel error. The force-sensing unit detects the external force, which is act on the stylus of CMM during the measuring process. Thus, the contact point of the stylus of CMM can be estimated ken the direction of measured force components. Based on the structural analysis of the proposed CMM probe, the transformation matrix is derived and calibrated so that it shows linear relationships between the estimated force components from the output voltages and the real input forces. And, the relationships are verified through the computer simulation. The results show that the proposed mechanical probe is very useful fur detecting the contacting force components on measuring process of CMM.

  • PDF

Design, analyses, and evaluation of a spiral TDR sensor with high spatial resolution

  • Gao, Quan;Wu, Guangxi;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.683-699
    • /
    • 2015
  • Time Domain Reflectometry (TDR) has been extensively applied for various laboratory and field studies. Numerous different TDR probes are currently available for measuring soil moisture content and detecting interfaces (i.e., due to landslides or structural failure). This paper describes the development of an innovative spiral-shaped TDR probe that features much higher sensitivity and resolution in detecting interfaces than existing ones. Finite element method (FEM) simulations were conducted to assist the optimization of sensor design. The influence of factors such as wire interval spacing and wire diameter on the sensitivity of the spiral TDR probe were analyzed. A spiral TDR probe was fabricated based on the results of computer-assisted design. A laboratory experimental program was implemented to evaluate its performance. The results show that the spiral TDR sensor featured excellent performance in accurately detecting thin water level variations with high resolution, to the thickness as small as 0.06 cm. Compared with conventional straight TDR probe, the spiral TDR probe has 8 times the resolution in detecting the water level changes. It also achieved 3 times the sensitivity of straight TDR probe.

Design and Fabrication of a 3-dimensional Diagnostic Ultrasonic Probe (3차원 입체 영상 진단용 초음파 프로브의 설계 및 제작)

  • Eun, Hong;Lee, Su-Sung;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.766-771
    • /
    • 2002
  • In this study, we have developed a 3-dimensional diagnostic ultrasonic sector probe using a convex type ultrasonic probe with 128 active elements. The probe was made to operate at the center frequency of 4.5㎒ with the bandwidth of 66%. The driving part was designed to rotate the axis of the convex probe by means of a step motor equipped with reduction gears and spur gears attached to the motor so that the probe could enable us to acquire a series of 2-dimensional images to construct a 3-dimensional image. Acoustic cover of the probe was made of polymers to have the same radius of rotation as that of the convex probe. The controllability of the rotation angle and the structural stability of the probe were confirmed through experimental 3-dimensional images obtained using the developed 3-dimensional sector probe.

Construction of 1H-15N Double Resonance Solid-State NMR Probe for Membrane Proteins in Aligned Bicelles

  • Park, Tae-Joon;Kim, Ji-Sun;Um, Seung-Hoon;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1187-1191
    • /
    • 2010
  • $^1H-^{15}N$ heteronuclear dipolar coupling solid-state NMR experiments on lipid bilayer or bicelle samples are very useful for the structural studies of membrane proteins. However, to study these biological samples using solid-state NMR, a specific probe with high efficiency and high capability is required. In this paper, we describe the optimized design, construction, and efficiency of a 400 MHz wide-bore $^1H-^{15}N$ solid-state NMR probe with 5-mm solenoidal rf coil for high power, multi-pulse sequence experiments, such as 2D PISEMA or 2D SAMMY.

Design of an Electrostatic 2-axis MEMS Stage having Large Area Platform for Probe-based Storage Devices (대면적 플랫폼을 갖는 Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지의 설계)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.82-90
    • /
    • 2006
  • Recently the electrostatic 2-axis MEMS stages have been fabricated for the purpose of an application to PSD (Probe-based Storage Device). However, all of the components(platform, comb electrodes, springs, anchors, etc.) in those stages are placed in-plane so that they have low areal efficienceis, which is undesirable as data storage devices. In this paper, we present a novel structure of an electrostatic 2-axis MEMS stage that is characterized by having large area platform. for obtaining large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. The structure and operational principle of the MEMS stage are described, followed by a design procedure, structural and modal analyses using FEM(Finite Element Method). The areal efficiency of the MEMS stage was designed to be about 25%, which is very large compared with the conventional ones having a few percentage.

Investigation on friction stir welding and friction stir processing for 5456-H116 (5456-H116 합금에 대한 마찰교반 용접과 마찰교반 프로세싱에 관한 연구)

  • Kim, Seong-Jong;Park, Jae-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.242-243
    • /
    • 2009
  • Friction stir welding and friction stir processing is a new solid state processing technique for ioining and micro..structural modification in metallic materials. It has been applied not only joining for light metals but also modification of the microstructure to enhance mechanical properties. In thin study, we investigated the mechanical properties for applied friction stir welding and processing under various parameters such as probe diameter, probe type, traveling speed and rotating speed for 5456-H116 AI allov. As a result of experiments, optimum condition of friction stir welding is traveling speed of 15mm/min, rotating speed of 500RPM at 6mm diameter probe. Moreover, in the case of friction stir processing, the optimum condition is traveling speed of 15mm/min, rotating speed of 250RPM at full screw probe. As above mentioned, the mechanical characteristics enhanced with the decreasing of traveling speed and the increasing of friction areas because of plastic flow due to high friction heat. These result can be used as reference data for ship repairment.

  • PDF