• 제목/요약/키워드: Structural Conversion

검색결과 324건 처리시간 0.024초

Enzymatic Hydrolysis of Crystalline Chitin in an Agitated Bead Reaction System and Its Reaction Characteristics

  • Lee, Yong-Hyun;Bae, Young-Ki;Jeong, Eui-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.432-438
    • /
    • 1996
  • Native crystalline chitin was hydrolyzed in an agitated bead reaction system using crude chitinase excreted from Aspergillus fumigatus JC-19. The reaction was enhanced significantly, and the concentration and yield of reducing sugar after 48 hours were measured to be 35.42 g/I (w/v) and 0.64, respectively, around 1.86 times higher than those of the conventional system that was carried out without glass beads. The effect of reaction conditions, such as the amounts of chitin, chitinase and glass beads, and the size of glass bead, were examined. Ball milled chitin was also hydrolyzed in the agitated bead reaction system, the conversion yield and reaction rate of ball milled chitin for 24 hours increased up to 0.87 and 48.02 g/I, respectively. Chitinase showed relatively high stability in the agitated bead reaction system, particularly in the presence of enzyme stabilizer, $Ca^{++}$, which played a critical role in preventing the deactivation of chitinase by the physical impact of glass beads. The variations of the structural features of chitin during the reaction were followed by SEM and X-ray diffraction, and the enhanced hydrolysis reaction was caused by both the fragmentation of chitin particles and the destruction of the crystalline structure owing to the synergic effects of the attrition of glass beads and the hydrolytic action of chitinase.

  • PDF

High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk

  • You, Hyun Ju;Ahn, Hyung Jin;Kim, Jin Yong;Wu, Qian Qian;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.469-478
    • /
    • 2015
  • In spite of the reported probiotic effects, Bifidobacterium bifidum BGN4 (BGN4) showed no βglucosidase activity and failed to biotransform isoflavone glucosides into the more bioactive aglycones during soy milk fermentation. To develop an isoflavone-biotransforming BGN4, we constructed the recombinant B. bifidum BGN4 strain (B919G) by cloning the structural β-glucosidase gene from B. lactis AD011 (AD011) using the expression vector with the constitutively active promoter 919 from BGN4. As a result, B919G highly expressed β-glucosidase and showed higher β-glucosidase activity and heat stability than the source strain of the β-glucosidase gene, AD011. The biotransformation of daidzin and genistin compounds using the crude enzyme extract from B919G was completed within 4 h, and the bioconversion of daidzin and genistin in soy milk during fermentation with B919G also occurred within 6 h, which was much faster and higher than with AD011. The incorporation of this β-glucosidase-producing Bifidobacterium strain in soy milk could lead to the production of fermented soy milk with an elevated amount of bioavailable forms of isoflavones as well as to the indigenous probiotic effects of the Bifidobacterium strain.

태양광 모듈의 구조디자인과 설치각도에 따른 출력예측 (Prediction of Output Power for PV Module with Tilted Angle and Structural Design)

  • 고재우;윤나리;민용기;정태희;원창섭;안형근
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.371-375
    • /
    • 2013
  • A new model about output power prediction of PV module with various tilted angles and cell to cell distances has been proposed in this paper. Light intensity arrived on a solar cell could be changed by characteristics of PV module materials. Refractive indices, thickness and absorption coefficients of glass, EVA, solar cell and Backsheet are used to predict output. Also, the incident angle of light is changed 0 to 90[$^{\circ}$] and cell to cell distances are 5, 10 15[mm]. Two types of light incident on a solar cell are considered which are direct to a solar cell and reflected from Backsheet. The intensity of the incident light directly into the solar cell is reduced through glass and EVA about 17.5[%] in theoretical way. It has an error of 2.26[%] compared with experimental result. The results for compare theoretical with experimental data is validated within the error of 6.3[%]. This paper would be a research material to predict output power when the PV module is installed outdoor or a building.

초고속 비행체 냉각을 위한 연료의 흡열성능 개선용 성형촉매 적용연구 (Improvement of Endothermic Characteristics with Catalyst Molding in Hypersonic Aircraft Cooling System)

  • 현동훈;이태호;김성현;정병훈;한정식
    • 한국추진공학회지
    • /
    • 제21권3호
    • /
    • pp.56-60
    • /
    • 2017
  • 극초음속 비행체에서는 공기와의 마찰열과 엔진열의 증가로 기체 내부의 열적 부하가 발생한다. 이는 비행체 내부 구조물의 변형을 일으키고 오작동을 발생시킬 수 있다. 흡열연료는 액체 탄화수소 연료로 흡열반응을 통해 열을 흡수할 수 있는 연료이다. 본 연구에서는 exo-tetrahydrodicyclopentadiene을 모델연료로 선정하고 흡열 냉각 시스템에 제올라이트 촉매를 사용하여 흡열반응을 수행하였다. 세가지 형태로 촉매를 성형하여 각 형태별 흡열 성능 차이를 관찰하였다. 본 연구에서 바인더가 첨가된 촉매가 더 높은 흡열량과 전환율을 보였다. 생성물 분석 결과 바인더 첨가 촉매에서 방향족의 생성이 더 많은 것을 확인하였다.

고성능 고체산화물 연료전지를 위한 이중층 전해질 전략 (A brief review of the bilayer electrolyte strategy to achieve high performance solid oxide fuel cells)

  • 박정화;김도엽;김경준;배경택;이강택
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.184-199
    • /
    • 2020
  • The solid oxide fuel cells (SOFCs) are the one of the most promising energy conversion devices which can directly convert chemical energy into electric power with high efficiency and low emission. The lowering operating temperature below 800 ℃ has been considered as the mostly considerable research and development for commercialization. The major issue is to maintain reasonably high performance of SOFCs at reduced temperatures due to increment of polarization resistance of electrodes and electrolyte. Thus, the alternative materials with high catalytic activities and fast oxygen ion conductivity are required. For recent advances in electrolyte materials and technology, newly designed, highly conductive electrolyte materials and structural engineering of them provide a new path for further reduction in ohmic polarization resistance from electrolytes. Here, a powerful strategy of the bilayer concept with various oxide electrolytes of SOFCs are briefly reviewed. These recent developments also highlight the need for electrolytes with greater conductivity to achieve a high performance, thus providing a useful guidance for the rational design of cell structures for SOFCs. Moreover, cell design, materials compatibility, processing methods, are discussed, along with their role in determining cell performance. Results from state-of-the-art SOFCs are presented, and future prospects are discussed.

전착법을 이용한 Cu2O 박막 형성 및 공정 조건에 따른 특성 변화 (Influence of Process Conditions on Properties of Cu2O Thin Films Grown by Electrodeposition)

  • 조재유;하준석;류상완;허재영
    • 마이크로전자및패키징학회지
    • /
    • 제24권2호
    • /
    • pp.37-41
    • /
    • 2017
  • $Cu_2O$는 초저가 태양전지의 흡수층으로 적용될 수 있는 물질 중 하나로 direct band gap($E_g={\sim}2.1eV$)을 갖고 있으며 최대 650 nm 파장의 빛을 흡수 할 수 있는 높은 흡수율을 가지고 있다. 또한 무독성, 풍부한 매장량으로 낮은 비용 등의 여러 장점을 가지며 간단하고 저렴한 방법으로 대량으로 제작이 가능하다. 본 연구에서 Au가 증착된 $SiO_2/Si$ 기판 위에 전착법을 통해 $Cu_2O$ 박막을 제작하였다. 우리는 용액의 pH와 작업전극에 인가되는 전위, 용액의 온도와 같은 공정조건을 바꾸어주었고 최종적으로 XRD와 SEM 사진 분석을 통해 박막의 특성을 확인하였다.

Ga 함유량에 따른 Co-evaporation 방법에 의해 제조된 Cu(In1-x,Gax)Se2 박막 태양전지의 구조 및 전기적 특성 (Structural and Electrical Properties of Co-evaporated Cu(In1-x,Gax)Se2 Thin Film Solar Cells with Varied Ga Content)

  • 임종엽;이용구;박종범;김민영;양계준;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.755-759
    • /
    • 2011
  • $Cu(In_{1-x},Ga_x)Se_2$ thin films have been considered as an effective absorber material for high efficient solar cells. In this paper, the CIGS thin films with varied Ga content were prepared using a co-evaporation process of three stage. We carry out structure and electrical optical property on the thin film in varied Ga content. CIGS thin films have been characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), four-point probe measurement, and the Hall measurement. To optimize Ga contents, Ga/(In+Ga) ratio were changed from 0.13 to 0.72. At this time the carrier concentrations were varied from $1.22{\times}10^{11}\;cm^{-3}$ to $5.07{\times}10^{16}\;cm^{-3}$, and electrical resistivity were varied from $1.11{\times}10^0\;{\Omega}-cm$ to $1.08{\times}10^2\;{\Omega}-cm$. A strong <220/204> orientation and a lager grain size were obtained at a Ga/(In+Ga) of 0.3. We were able to achieve conversion efficiency as high as 15.95% with a Ga/(In+Ga) of 0.3.

스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가 (Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors)

  • 이주연;김인영;;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.135-139
    • /
    • 2015
  • $Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.

실내공간의 이미지 표현 특성에 관한 연구 -상업공간의 디자인을 중심으로- (A Study on the Characteristics in Image Expression of Interior Space)

  • 홍승대
    • 디자인학연구
    • /
    • 제12권4호
    • /
    • pp.243-250
    • /
    • 1999
  • 실내공간의 구성원리는 비가식적 측면의 '내용'과 가시적 측면의 '형태'간의 결합방식에 의해 결정되며 그에 따라 다양한 의미가 내재하게 된다. 특히 실내디자인에 있어서의 내용은 형식을 통하여 총체적으로 표현하고자 하는 비가시적인 개념이며, 이는 디자이너가 공간의 사용자에게 전하고자 하는 이미지가 중심이 된다. 본 연구에서는 이미지 표현에 있어서의 구조적, 유형적, 전달의 특성을 규명하기 위해, 관련 문헌 조사를 통하여 이지미에 관한 내용을 파악한 후 국내외에 발표된 상업공간을 대상으로 공간 분석을 시도하였다. 분석결과 실내공간에서의 이미지는 디자이너의 초기공간 개념으로써 의미의 심층부를 형성하며 다양한 형태소의 변환규칙에 의해 의미가 전달됨을 확인할 수 있었다. 결론적으로 실내공간의 이미지는 공간의 형식적인 요소에 의해 자연히 발생되는 부가적 개념이 아니라 공간계획의 초기 단계부터 다루어져야 하는 계획개념으로 인식되어야 한다는 결론을 얻을 수 있다.

  • PDF

Comparison of characteristics of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics

  • Jeong, Jin-A;Choi, Kwang-Hyuk;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.131-131
    • /
    • 2010
  • We compared the electrical, optical, structural, and interface properties of indium zinc oxide (IZO)-Ag-IZO and IZO-Au-IZO multilayer electrodes deposited by linear facing target sputtering system at room temperature for organic photovoltaics. The IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes show a significant reduction in their sheet resistance (4.15 and 5.49 Ohm/square) and resistivity ($3.9{\times}10^{-5}$ and $5.5{\times}10^{-5}$Ohm-cm) with increasing thickness of the Ag and Au layers, respectively. In spite of its similar electrical properties, the optical transmittance of the IZO-Ag-IZO electrode is much higher than that of the IZO-Au-IZO electrode, due to the more effective antireflection effect of Ag than Au in the visible region. In addition, the Auger electron spectroscopy depth profile results for the IZO/Ag/IZO and IZO/Au/IZO multilayer electrodes showed no interfacial reaction between the IZO layer and Ag or Au layer, due to the low preparation temperature. To investigate in detail the Ag and Au structures on the bottom IZO electrode with increasing thickness, a synchrotron x-ray scattering examination was employed. Moreover, the OSC fabricated on the IZO-Ag-IZO electrode shows a higher power conversion efficiency (3.05%) than the OSC prepared on the IZO-Au-IZO electrode (2.66%), due to its high optical transmittance in the wavelength range of 400-600 nm, which is the absorption wavelength of the P3HT:PCBM active layer.

  • PDF