• Title/Summary/Keyword: Strong local property

Search Result 28, Processing Time 0.03 seconds

ON THE $H^s_\omega$-WAVE FRONT SETS

  • Kang, Bu-Hyeon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.273-280
    • /
    • 1996
  • In this paper we extend the concept of the Sobolev wave front set of a distribution to the one of the generalized Sobolev wave front set of a generalized distribution, and we investigate the relations among these concepts. Finally, we prove the local property of these sets.

  • PDF

A local point interpolation method for stress analysis of two-dimensional solids

  • Liu, G.R.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.221-236
    • /
    • 2001
  • A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.

Development of Aspheric Surface Profilometry using 2nd Derivative (형상의 이차미분을 이용한 비구면 형상측정기술 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • I present a method of aspheric surface profile measurement using 2nd derivative of local area profile. This method is based on the principle of curvature sensor which measures the local 2nd derivative under test along a line. The profile is then reconstructed from the data on the each point. Unlike subaperture-stiching method and slope detection method, 2nd derivative method has strong points from a geometric point of view in measuring the aspheric surface profile. The second derivative terms of surface profile is an intrinsic property of the test piece, which is independent of its position and tip-tilt motion. The curvature is measured at every local area with high accuracy and high lateral resolution by using White-light scanning interferometry.

Electromagnetic Property of a Heavy Fermion CePd2Si2 (헤비 페르미온 CePd2Si2의 전자기적 특성)

  • Jeong, Tae Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.399-402
    • /
    • 2019
  • The electromagnetic properties of heavy fermion $CePd_2Si_2$ are investigated using density functional theory using the local density approximation (LDA) and LDA+U methods. The Ce f-bands are located near the Fermi energy and hybridized with the Pd-3d states. This hybridization plays an important role in generating the physical characteristics of this compound. The magnetic moment of $CePd_2Si_2$ calculated within the LDA scheme does not match with the experimental result because of the strong correlation interaction between the f orbitals. The calculation shows that the specific heat coefficient underestimates the experimental value by a factor of 5.98. This discrepancy is attributed to the formation of quasiparticles. The exchange interaction between the local f electrons and the conduction d electrons is the reason for the formation of quasiparticles. The exchange interaction is significant in $CePd_2Si_2$, which makes the quasiparticle mass increase. This enhances the specific heat coefficient.

Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice

  • Goo, Yong-Sook;Ahn, Kun-No;Song, Yeong-Jun;Ahn, Su-Heok;Han, Seung-Kee;Ryu, Sang-Baek;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.415-422
    • /
    • 2011
  • Previously, we reported that besides retinal ganglion cell (RGC) spike, there is ~10 Hz oscillatory rhythmic activity in local field potential (LFP) in retinal degeneration model, rd1 mice. The more recently identified rd10 mice have a later onset and slower rate of photoreceptor degeneration than the rd1 mice, providing more therapeutic potential. In this study, before adapting rd10 mice as a new animal model for our electrical stimulation study, we investigated electrical characteristics of rd10 mice. From the raw waveform of recording using $8{\times}8$ microelectrode array (MEA) from in vitro-whole mount retina, RGC spikes and LFP were isolated by using different filter setting. Fourier transform was performed for detection of frequency of bursting RGC spikes and oscillatory field potential (OFP). In rd1 mice, ~10 Hz rhythmic burst of spontaneous RGC spikes is always phase-locked with the OFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, there is a strong phase-locking tendency between the spectral peak of bursting RGC spikes (~5 Hz) and the first peak of OFP (~5 Hz) across different age groups. But this phase-locking property is not robust as in rd1 retina, but maintains for a few seconds. Since rd1 and rd10 retina show phase-locking property at different frequency (~10 Hz vs. ~5 Hz), we expect different response patterns to electrical stimulus between rd1 and rd10 retina. Therefore, to extract optimal stimulation parameters in rd10 retina, first we might define selection criteria for responding rd10 ganglion cells to electrical stimulus.

Pharmacognostical Evaluation of Gymnema sylvestre R. Br.

  • Agnihotri, Adarsh Kumar;Khatoon, Sayyada;Agarwal, Manisha;Rawat, Ajay Kumar Singh;Mehrotra, Shanta;Pushpangadan, Palpu
    • Natural Product Sciences
    • /
    • v.10 no.4
    • /
    • pp.168-172
    • /
    • 2004
  • In India, Gymnema sylvestre due to the unique property of the plant to antagonize the sweet taste is known as 'Gur-mar'. It has several ethnomedicinal values as various tribals/traditional communities and rural peoples of India find diverse medicinal uses viz. antidiabetic, stomachic, diuretic, and is useful in cough and throat troubles. Besides, it has strong effect on reducing blood sugar. The present communication deals with the detailed pharmacognostical evaluation of the aerial parts of G. sylvestre collected from three places of the country-Varanasi (U.P), Panchmarhi (M.P), Salem (Tami Nadu) and commercial sample procured from local market. The botanical and physico-chemical parameters of all the samples were quite similar though little variations were observed in foaming index, alcohol and water soluble extractives of local sample. The microscopic characteristics of the drug are horse shoe shaped petiole with 3 amphicribal vascular bundles, sieve tubes well developed; anomocytic stomata only on the abaxial surface of the leaf, the fan shaped amphicribal vascular bundle, presence of intraxylary phloem. The TLC fingerprint profile of all the samples was more or less similar only the quantity of some of the compounds varied.

Direct Numerical Simulation of Turbulent Heat Transfer to Fluids at Supercritical Pressure Flowing in Vertical Tubes (직접수치모사를 이용한 수직원형관내 초임계압 유체의 난류 열전달 특성 연구)

  • Bae, Joong-Hun;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1302-1314
    • /
    • 2004
  • Turbulent heat transfer to $CO_2$ at supercritical pressure flowing in vertical tubes is investigated using direct numerical simulation (DNS). A conservative space-time discretization scheme for variable-density flows at low Mach numbers is adopted in the present study to treat steep variations of fluid properties at supercritical pressure just above the thermodynamic critical point. The fluid properties at these conditions are obtained using PROPATH and used in the form of tables in the simulations. The buoyancy influence induced by strong variation of density across the pseudo-critical temperature proved to play a major role in turbulent heat transfer at supercritical state. Depending on the degree of buoyancy influence, turbulent heat transfer may be enhanced or significantly deteriorated, resulting in local hot spots along the heated surface. Based on the results of the present DNS combined with theoretical considerations, the physical mechanism of this local heat transfer deterioration is elucidated.

A SHARP BOUND FOR ITO PROCESSES

  • Choi, Chang-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.713-725
    • /
    • 1998
  • Let X and Y be Ito processes with dX$_{s}$ = $\phi$$_{s}$dB$_{s}$$\psi$$_{s}$ds and dY$_{s}$ = (equation omitted)dB$_{s}$ + ξ$_{s}$ds. Burkholder obtained a sharp bound on the distribution of the maximal function of Y under the assumption that │Y$_{0}$$\leq$│X$_{0}$│,│ζ│$\leq$$\phi$│, │ξ│$\leq$$\psi$│ and that X is a nonnegative local submartingale. In this paper we consider a wider class of Ito processes, replace the assumption │ξ│$\leq$$\psi$│ by a more general one │ξ│$\leq$$\alpha$$\psi$│ , where a $\geq$ 0 is a constant, and get a weak-type inequality between X and the maximal function of Y. This inequality, being sharp for all a $\geq$ 0, extends the work by Burkholder.der.urkholder.der.

  • PDF

Direct Numerical Simulation of Turbulent Heat Transfer to Water at Supercritical Pressure Flowing in Vertical Pipes (수직원형관내 초임계압 물의 난류 열전달에 관한 직접수치모사)

  • Lee, Sang-Hoon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2471-2476
    • /
    • 2008
  • Turbulent flow and heat transfer to water at supercritical pressure flowing in vertical pipes is investigated using direct numerical simulation (DNS). A conservative space-time discretization scheme for variable-density flows at low Mach numbers is adopted in the present study to treat steep variations of fluid properties at supercritical pressure just above the thermodynamic critical point. The fluid properties at these conditions are obtained using PROPATH and used in the form of tables in the simulations. The buoyancy influence induced by strong variation of density across the pseudo-critical temperature proved to play an important role in turbulent flow and heat transfer at supercritical state. Depending on the degree of buoyancy influence, turbulent heat transfer may be enhanced or significantly deteriorated, resulting in local hot spots along the heated surface.

  • PDF

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.