• Title/Summary/Keyword: Strip Theory

Search Result 214, Processing Time 0.028 seconds

Analysis of the Critical Speed and Hunting Phenomenon of a High Speed Train (고속전철의 임계속도와 헌팅현상 해석)

  • Song, Ki-Seok;Koo, Ja-Choon;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • Contact between wheel and rail leads to the creep phenomenon. Linear creep theory, assuming linear increase in the creep force vs creep, results in a critical speed at which the vibration of a railway vehicle goes to infinity. However, the actual creep force converges to a limited value, so that the vibration of a railway vehicle cannot increase indefinitely. In this study, the dynamics of a railway vehicle is investigated with a 6 DOF bogie model includingthe nonlinear creep curves of Vermeulen, Polach, and a newly calculated creep curve with strip theory. Strip theory considers the profiles of the wheel and rail. The results show that the vibration of a railway vehicle results in a limit-cycle over a specific running speed, and this limit-cycle becomes smaller as the slope of the creep-curve steepens. Moreover, a hunting phenomenon is caused due to flange contact, which restricts the magnitude of the limit-cycle.

Aeroelastic Stability Analysis of Composite Bearingless Rotor Blades in Hover (복합재 무베어링 로우터 블레이드의 정지 비행시 공력탄성학적 안정성 해석)

  • Lim In-Gyu;Choi Ji-Hoon;Lee In;Han Jae-Hung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.83-86
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube root. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory and Loewy's aerodynamic theory with the lift deficiency function are used for unsteady aerodynamic computation. The finite element equations of motion for beams are obtained using Hamilton's principle. Numerical results of selected bearingless rotor configurations are obtained for the lay-up of laminae in the flexbeam and pitch links location.

  • PDF

Modeling of rain-wind induced vibrations

  • Peil, Udo;Nahrath, Niklas
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Rain-wind induced vibrations of cables are a challenging problem in the design of cable-stayed bridges. The precise excitation mechanism of the complex interaction between structure, wind and rain is still unknown. A theoretical model that is able to accurately simulate the observed phenomena is not available. This paper presents a mathematical model describing rain-wind induced vibrations as movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable and the movement of the water rivulet on the cable surface can be described by the model including all geometrical and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the model is capable of simulating the basic phenomena of the vibrations, such as dependence of wind velocity and cable damping. The results agree well with field data and wind tunnel tests. An extensive experimental study is currently performed to calibrate the parameters of the model.

A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips

  • Momeni-Khabisi, Hamed;Tahani, Masoud
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.427-440
    • /
    • 2022
  • In the present study, the nonlocal strain gradient theory is used to predict the size-dependent buckling and post-buckling behavior of geometrically imperfect nano-scale piezo-flexomagnetic plate strips in two modes of direct and converse flexomagnetic effects. The first-order shear deformation plate theory is used to analyze analytically nano-strips with simply supported boundary conditions. The nonlinear governing equations of equilibrium and associated boundary conditions are derived using the principle of minimum total potential energy with consideration of the von Kármán-type of geometric nonlinearity. A closed-form solution of governing differential equation is obtained, which is easily usable for engineers and designers. To validate the presented formulations, whenever possible, a comparison with the results found in the open literature is reported for buckling loads. A parametric study is presented to examine the effect of scaling parameters, plate slenderness ratio, temperature, the mid-plane initial rise, flexomagnetic coefficient, different temperature distributions, and magnetic potential, in case of the converse flexomagnetic effect, on buckling and post-buckling loads in detail.

The Analysis of Bearing Capacity Behavior of Strip Footing on Geogrid-Reinforced Sand over a Soft Clay by Numerical Method (수치해석방법에 의한 연약지반위의 보강띠기초의 지지력거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Earth reinforcement by using geogrids as reinforcing materials are widely applied to several earth structures. The bearing capacity of geogrid reinforced foundation soils is usually examined on based on the rigid plasticity theory or Limit Equilibrium Method. Method of analysis such Limit Equilibrium Method provide no detail information about failure behaviour or strain which develop in the reinforcement or foundation. In this paper the analysis of failure behaviour of strip footing on geogrid-reinforced sand over a soft caly was investigated by using a numerical method. A series of finite element analyses were performed on a geogrid-reinforced strip footing over a soft clay including number of geogrid layers, length, depth. We effectively investigated the failure behaviour and improvement of bearing capacity on the reinforced foundation soil by using FEM program.

  • PDF

Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method (선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선)

  • Zhang, Yang;Yum, Deuk-Joon;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

Evaluation on Bearing Resistance of Transverse Members in Steel Strip Reinforcement using Pullout Tests and Theoretical Equations (인발시험과 이론식을 이용한 강재스트립 보강재에 설치된 지지부재의 지지저항 특성 평가)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Hong, Won-Pyo;Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate pullout resistance of steel strip reinforcement with transverse members. The test results are compared with theoretical equations and then the failure mechanism of transverse members is evaluated. The bearing resistance stress(${\sigma}^{\prime}_b$) of transverse members, which is applied pullout force at 50mm displacement, is closed from punching shear failure to general shear failure. The behavior by increment of a number of transverse members became closer to general shear failure. The behavior of transverse members at maximum pullout force, which is closed to general shear failure, is indicated that it is unrelated to normal stress and a number of transverse members. However, if the allowable displacement of reinforced soil wall is considered, it is impossible to apply in design. The test results are compared with bearing resistance evaluations using Prandtl's plastic theory and cylindrical cavity expansion theory. The analysis results are indicated that the bearing resistance by pullout tests is closed to predicted result by Prandtl's plastic theory, which are located between general shear failure and punching shear failure.

  • PDF

Analysis of Capsizing Phenomena of a Shop in Waves (파도중 선박의 전복 현상 해석)

  • 안창구;고창두
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • In this paper, a program for the calculation of GZ curve for a ship in waves is developed and GZ curves for a ferry in the still water and in waves are calculated. And the added mass, damping, restoring forces and wave exciting forces are calculated by using the strip theory given by Salvesen, Tuck, Faltinsen. Capsizing simulations are perfoned in consideration if the nonlinear restoring forces of the ship in waves by using the Runge-Kutta 4-th method.

  • PDF

Velocity Measurement System Design Based on Quantization Error Constraint

  • Katsunori, Shida;Toyonori, Matsuda
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.1-86
    • /
    • 2001
  • Combined with a counter, wheel or strip encoders which have equally divided markers are one of frequent measuring choices towards various applications in terms of cost, simplicity, and diversity of measurements, e.g., measuring displacement, velocity, acceleration, and so on. Often, velocity is measured by counting the series of reference clocks for a period of time which sensor-carrying device took for traveling two adjacent encoding markers. Quantizaion error of such that the disturbance caused by quantization error is under control. This paper identifies design issues, developes theory, and proposes a paradigm to design a velocity measurement system such ...

  • PDF

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF