• Title/Summary/Keyword: Stress transfer length

Search Result 96, Processing Time 0.033 seconds

Analytical Model for Transfer Bond Performance of Prestressing Strands (PS 강선의 정착부착성능에 관한 해석 모델)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.92-101
    • /
    • 1994
  • A new analytical model is proposed to better understand the transfer bond performance in a prestressed pretensioned concrete beam. The transfer length is divided into an elastic and a plas tic zones in this model. The bond stress is assumed t.o increase proportionally with the slip t.o the lirnit of maximum bond stress within the elastic zone and remains at a constant maximum value wthin the plastic zone. Four main stress patterns: bond stress, slip, steel stress, and concrete stress distributions within the transfer length are obtained precisely. The total transfer length al\ulcornerd free-end slip obtained here give a close comparison to the test results by Cousins et al.

Theoretical Determination of Transfer Length in Pretensioned Members Using Thick Cylinder Theory

  • Oh, Byung-Hwan;Kim, Eui-Sung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.31-43
    • /
    • 2000
  • The extensive usage of pretensioned prestressed concrete component in modem construe- tion as structural members mandates precise understanding of its mechanism. Especially, an adequate transfer of prestressing force from steel tendons to concrete around the end regions of the member is a critical issue. Due to the importance of the topic, several investigators have formulated equations modeling the transfer bond length based on various bonding mechanism between steel and concrete. However, the existing models are still inadequate in predicting the bond development in pretensioned prestressed concrete members. Therefore, this study presents a model of transfer bond length based on rational theory that can simulate experimental results. The model is developed into solid mechanics based structural analysis computer program. The program is validated by comparing the analysis results with experimental results of bond stress distribution, concrete strain profiles, and transfer length in pretensioned prestressed concrete members. The proposed analytical procedure in this study can be utilized as a useful tool for realistic evaluation of transfer length in pretensioned prestressed concrete members.

  • PDF

A Stress Transfer Length of Pre-tensioned Members Using Ultra High Performance Concrete (초고성능 콘크리트 프리텐션부재의 응력전달길이)

  • Kim, Jee-Sang;Choi, Dong-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.336-341
    • /
    • 2018
  • The prestressing force introduced to the tendon in pretensioned concrete members is transferred by direct bond between tendon and concrete, which requires a proper estimation of stress transfer length. The use of pretensiond and/or precast members with UHPC (Ultra High Performance Concrete) may give many advantages in quality control. This paper presents an experiment to estimate the stress transfer length of UHPC for various compressive strength levels of UHPC, cover depths, diameters of tendons and tensioning forces. According to the result of this experiment, the stress transfer length of UHPC member is much reduced comparing that of normal strength concrete. The reduction in stress transfer length of UHPC may come from the high bond strength capacity of UHPC. The transfer lengths obtained from this experiment are compared to those in current design code and a new formula is proposed.

Analytical model for transfer length prediction of 13 mm prestressing strand

  • Marti-Vargas, J.R.;Arbelaez, C.A.;Serna-Ros, P.;Navarro-Gregori, J.;Pallares-Rubio, L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.211-229
    • /
    • 2007
  • An experimental investigation to determine the transfer length of a seven-wire prestressing strand in different concretes is presented in this paper. A testing technique based on the analysis of bond behaviour by means of measuring the force supported by the prestressing strand on a series of specimens with different embedment lengths has been used. An analytical bond model to calculate the transfer length from an inelastic bond stress distribution along the transfer length has been obtained. A relationship between the plastic bond stress for transfer length and the concrete compressive strength at the time of prestress transfer has been found. An equation to predict the average and both the lower bound and the upper bound values of transfer length is proposed. The experimental results have not only been compared with the theoretical prediction from proposed equations in the literature, but also with experimental results obtained by several researchers.

Tests on Transfer Bond Performance of Epoxy Coated Prestressing Strands (에폭시 코팅 처리된 PS강선의 정착부착성능 실험)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.89-100
    • /
    • 1994
  • The current test procedure for transfer length, which determine transfer length by measuring concrete strain, has an actual bond stress state in the prestressed pretensioned member : however, it is difficult to determine the bond properties of maximum bond stress and bond stiffness with this method. It is also difficult for design engineer to understand and select a correct safety criterion from the widely distributed results of such a ransfer test alone. An alternative testing procedure is provided here to determine the bond properties without measuring the concrete strain. In this test the bond stress is measured directly by creating a similar boundary condition within the transfer length in a real beam during the transfer of prestressing force. The prestressing force was released step by step by step from the unloading side. The release of force induces a swelling of the strand at the unloading side of concrete block, bonding force in the block, and a bond slip of the strand toward the other side of the block. Two center-hole load cells are used to record the end loads until the point of general bond slip(maximum bond stress). It is suggested that this test procedure be performed with the ordinary transfer test when determining the transfer length in a prestressed, pretensioned concrete beam.

An evaluation equation of load capacities for CFT square column-to-beam connections with combined diaphragm

  • Choi, Sung-Mo;Jung, Do-Sub;Kim, Dae-Joong;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.303-320
    • /
    • 2007
  • The objective of this study is to clarify the structural features of members consisting of connection, as a series of the previous study on the CFT column-to-beam tensile connection with combined cross diaphragm. This connection has the merits that the stress is distributed evenly on the beam flange and the diaphragm and the stress concentration is reduced, by improving the stress transfer route and restraining abrupt deformation of diaphragm. The finite element analysis was performed to find out the stress transfer through sleeve which is an important member of the connection with combined cross diaphragm. The length and thickness of sleeve were used as variables for the analysis. As the analysis results, the length and thickness of sleeve didn't influence on the capacity of the connection and played a role of a medium to transfer the stress from the diaphragm to the filled concrete. It is proposed that the appropriate length of sleeve be the same value as the diameter of sleeve and the appropriate ratio of sleeve diameter to sleeve thickness be 20. Two equations for evaluation of the load-carrying capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.

Time-dependent bond transfer length under pure tension in one way slabs

  • Vakhshouri, Behnam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.301-312
    • /
    • 2016
  • In a concrete member under pure tension, the stress in concrete is uniformly distributed over the whole concrete section. It is supposed that a local bond failure occurs at each crack, and there is a relative slip between steel and surrounding concrete. The compatibility of deformation between the concrete and reinforcement is thus not maintained. The bond transfer length is a length of reinforcement adjacent to the crack where the compatibility of strain between the steel and concrete is not maintained because of partially bond breakdown and slip. It is an empirical measure of the bond characteristics of the reinforcement, incorporating bar diameter and surface characteristics such as texture. Based on results from a series of previously conducted long-term tests on eight restrained reinforced concrete slab specimens and material properties including creep and shrinkage of two concrete batches, the ratio of final bond transfer length after all shrinkage cracking, to THE initial bond transfer length is presented.

A Study on Load Transfer of Ground Anchors (그라운드 앵커의 하중전이 현상에 대한 연구)

  • 김낙경;박완서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.441-448
    • /
    • 1999
  • The load distribution in a ground anchor is very complex because it involves three different materials(soil, grout, and steel), which sometimes act as composite sections (bonded length) or separately (unbounded length). Therefore it is very hard to understand load transfer mechanism on the anchor. In order to understand the load transfer, it is essential to consider the load distribution In the three different materials. On these purposes, full scale anchor test is planned on the geotechnical site at Sunkyunkwan University Prior to the test, modeling and analyses of the load transfer mechanism were performed on the data from the case histories.

  • PDF

The Analysis of Transfer and Output characteristics by Stress in Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터에서 스트레스에 의한 출력과 전달특성 분석)

  • 정은식;안점영;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.145-148
    • /
    • 2001
  • In this paper, polycrystalline silicon thin film transistor using by Solid Phase Crystallization(SPC) were fabricated, and these devices were measured and analyzed the electrical output and transfer characteristics along to DC voltage stress. The transfer characteristics of polycrystalline silicon thin film transistor depended on drain and gate voltages. Threshold voltage is high with long channel length and narrow channel width. And output characteristics of polycrystalline silicon thin film transistor flowed abruptly much higher drain current. The devices induced electrical stress are decreased drain current. At last, field effect mobility is the faster as channel length is high and channel width is narrow.

  • PDF

Design Optimization of Pin-Fin Sharp to Enhance Heat Transfer

  • Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.185-190
    • /
    • 2005
  • This work presents a numerical procedure to optimize the elliptic-shaped pin fin arrays to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier Stokes analysis of flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show a reasonable agreement with the experimental data. Four variables including major axis length, minor axis length, pitch and the pin fin length nondimensionalized by duct height are chosen as design variables. The objective function is defined as a linear combination of heat transfer and friction-loss related terms with weighting factor. D-optimal design is used to reduce the data points, and, with only 28 points, reliable response surface is obtained. Optimum shapes of the pin-fin arrays have been obtained in the range from 0.0 to 0.1 of weighting factor.

  • PDF