• Title/Summary/Keyword: Stress tests

Search Result 3,679, Processing Time 0.027 seconds

Effects of Bainitic Transformation Temperature and Stress State on the Formability of C-Mn-Si TRIP Steels (C-Mn-Si계 변태유기소성강의 성형성에 미치는 베이나이트 변태온도 및 응력상태의 영향)

  • Jun H. S.;Oh J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.156-160
    • /
    • 2001
  • The effects of TRansformation Induced Plasticity(TRIP) phenomena on the plastic deformation of 0.2C-1.5Si-1.5Mn multiphase steels have been investigated at various heat treatment and stress conditions. In order to estimate the formability, the hole expansion(HE) tests and the tensile tests were carried out. The formability evaluated from the uni-axial tensile tests was quite different from the formability measured from multi-axial HE-tests. Consequently, the formability in the multi-axial stress state decreased due to the extinction of the retained austenite relatively at earlier deformation stage and the production of irregular α' martensite. However, the defects of TRIP-steels were initiated exactly at the boundary between transformed martensite and ferrite matrix regardless of stress state. In addition, new experimental formula is proposed in order to predict the multi-axial formability of the TRIP steels from the results of uniaxial tensile test.

  • PDF

Accelerated life test plan under modified ramp-stress loading with two stress factors

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.21-44
    • /
    • 2017
  • Accelerated life tests (ALTs) are frequently used in manufacturing industries to evaluate the reliability of products within a reasonable amount of time and cost. Test units are subjected to elevated stresses which yield quick failures. Most of the previous works on designing ALT plans are focused on tests that involve a single stress. Many times more than one stress factor influence the product's functioning. This paper deals with the design of optimum modified ramp-stress ALT plan for Burr type XII distribution with Type-I censoring under two stress factors, viz., voltage and switching rate each at two levels- low and high. It is assumed that usage time to failure is power law function of switching rate, and voltage increases linearly with time according to modified ramp-stress scheme. The cumulative exposure model is used to incorporate the effect of changing stresses. The optimum plan is devised using D-optimality criterion wherein the ${\log}_{10}$ of the determinant of Fisher information matrix is maximized. The method developed has been explained using a numerical example and sensitivity carried out.

  • PDF

Preshear Influence for Liquefaction Resistance in Sand (사질지반에서 액상화 저항에 대한 선행전단응력의 영향)

  • 윤여원;김한범;김방식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.315-322
    • /
    • 2003
  • Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) and the cyclic shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$${\alpha}$/) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$${\alpha}$,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$${\alpha}$/.

  • PDF

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

Unsaturated Effective Stress Based on Water Retention Characteristics for Triaxial Tests of Silty Sand (실트질 사질토의 삼축시험 시 함수특성에 따른 불포화 유효응력)

  • Lee, Younghuy;Oh, Seboong;Baek, Seungcheol;Kim, Sangmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Suction stress is evaluated from soil water retention curves in order to deduce effective stress in unsaturated soils. $K_0$ consolidated triaxial tests were performed for silty sand to interpret effective stress in consolidation and shearing of unsaturated soils. Suction stresses from both consolidation stress and shear strength in triaxial tests were compared with those from soil water retention curves. The effective stresses on consolidation and shear strength are on each unique line, which are the same as that of the saturated case. It was found that the effective stress from soil water retention curves agrees with those from consolidation and shear strength in triaxial tests.

Liquefaction Behaviour and Prediction of Deviator Stress for Unsaturated Silty Sand

  • Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.35-43
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour and predict deviator stress with matric suction, of unsaturated silty sand. The unsaturated soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. The axis translation technique was used to create the desired matric suctions in the specimen. Undrained triaxial compression tests were carried out at matric suction of 0, 2, 5, 10 and 25 kPa. The specimens were sheared to axial strains of about 20% to obtain steady state conditions. The results showed that liquefaction of silty sand only occurs at matric suction of 0 kPa and 2 kPa. The results also show that at matric suctions of 5, 10 and 25 kPa, the resistance to liquefaction increases. As the suction increases, the undrained effective stress path approached the drained stress path. Also, the predicted and measured maximum deviator stress for unsaturated soils using the effective stress concept showed good agreement as matric suction increases. The deviator stress increase is nonlinear as matric suction increases.

Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Considering Stress Concentration at Weld Toe (응력집중을 고려한 십자형 필렛 용접재의 피로강도 평가)

  • Kim D. J.;Seck C. S.;Koo J. M.;Park J. S.;Seo J. W.;Goo B. C.
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.222-227
    • /
    • 2004
  • Under cyclic loading, the fatigue failures of welded joints occur at weld toes which induce stress concentration by weld shape. So we need to obtain the peak stress and the S-N curve to assess the fatigue strength of welded joints. However the measurement of peak stress is of high uncertainty and low reproducibility, so we use nominal stress instead in fatigue tests of welded joints. In this study, fatigue tests to obtain S-N curves and FE analyses to obtain stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curves to that based on peak stress using the hot-spot stress concept. From the analyses of the S-N curves obtained, we have concluded that there is a need to develop a new method to evaluate the fatigue life.

  • PDF

Planning Practical Multiple-Stress Accelerated Life Tests (실용적 복합 가속수명시험 계획의 개발)

  • Bae, Bong-Soo;Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.112-121
    • /
    • 2017
  • Purpose: The most previous works on designing accelerated life tests (ALTs) are focused on the application of a single stress. Because of the difficulty to obtain the sufficient information in a reasonable duration using single stress only, there is needed in practice to use multiple-stress ALTs frequently. This paper presents new practical plans with two stresses for Weibull distribution. Methods: The four-level practical plans based on rectangle test region are proposed and compared with the corresponding three-level statistically optimal plans. Sensitivity analyses for assumed design parameters and life-stress relationship are conducted. Results: A procedure to choose practical ALT plans is illustrated with a numerical example and guidelines for planning two-stress ALTs are provided. Conclusion: The proposed two-stress ALT plans on practical constraints to assess a quantile of Weibull lifetime distribution at the use condition are efficient and robust.

Compound Linear Test Plan for 3-level Constant Stress Tests

  • Kim, In-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.945-952
    • /
    • 2006
  • Several accelerated life test plans use tests at only two levels of stress and thus, have practical limitations. They highly depend upon the assumption of a linear relationship between stress and time-to-failure and use only two extreme stresses that can cause irrelevant failure modes. Thus 3-level stress plans are preferable. When the lifetime distribution of test unit is exponential with mean lifetime $\theta_i$ at stress $x_i$, i=0, 1, 2, 3, we derive the optimum quadratic plan under the assumption that a quadratic relationship exists between stress and log(mean lifetime), and propose the compound linear plans, as an alternative to the optimum quadratic plan. The proposed compound linear plan is better than two other compromise plans for constant stress testing and nearly as good as the optimum quadratic plan, and has the advantage of simplicity.

  • PDF

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.495-502
    • /
    • 2023
  • In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.