• Title/Summary/Keyword: Stress softening

Search Result 259, Processing Time 0.021 seconds

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

Material Nonlinear Finite Element Analysis of Reinforced Concrete Structures (재료비선형성을 고려한 R/C 구조물의 유한요소해석)

  • Choi, Chang Koon;Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 1989
  • This paper concentrates on the analysis of reinforced concrete(R/C) structures subjected to monotonic loading, from zero to ultimate loads. Tensile cracking, the nonlinear stress-strain relationship for concrete and reinforcement are taken into account the concrete is assumed to be elastic in tension region and elasto-hardening plastic in compression region. The Kupfer's failure criteria and associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bar is considered as a elasto-hardening platic material. The tension stiffening effect of the concrete between cracks is also considered. The numerical error depends on the used finite element mesh size is reduced by correcting the slope of strain softening region of the concrete according to the developed energy criteria.

  • PDF

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.304-308
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

Effects of Vacuum Hot Pressing Conditions on Mechanical Properties and Microstructures of $SiC_w$/2124Al Metal Matrix Composites (Vacuum Hot Pressing 조건이 $SiC_w$/2124AI 금속복합재료의 기계적 성질 및 미세구조에 미치는 영향)

  • 홍순형
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.159-166
    • /
    • 1994
  • The variation of the microstructures and the mechanical properties with varying vacuum hot pressing temperature and pressure was investigated in PyM processed 20 vol%) SiCw/ 2124Al composites. As increasing the vacuum hot pressing temperature, the aspect ratio of whiskers and density of composites increased due to the softening of 2124Al matrix with the increased amount of liquid phase. The tensile strength of composite increased with increasing vacuum hot pressing temperature up to $570^{\circ}C$ and became saturated above $570^{\circ}C$, To attain the high densification of composites above 99%, the vacuum hot pressing pressure was needed to be above 70 MPa. However, the higher vacuum hot pressing pressure above 70 MPa was not effective to increase the tensile strength due to the reduced aspect ratio of SiC whiskers from damage of whiskers during vacuum hot pressing. A phenomenological equation to predict the tensile strength of $SiC_w$/2124AI composite was proposed as a function including two microstructural parameters, i.e. density of composites and aspect ratio of whiskers. The tensile strength of $SiC_w$/2124AI were found more sensitive to the porosity than other P/M materials due to the higher stress concentration and reduced load transfer efficiency by the pores locating at whisker/matrix interfaces.

  • PDF

Hot Deformation Behavior of AISI 4340 using Constitutive Model and Processing Map (구성 모델과 공정 지도를 이용한 AISI 4340강의 고온 변형 거동)

  • Kim, Keunhak;Jung, Minsu;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.187-196
    • /
    • 2017
  • High temperature flow behaviors of AISI 4340 steel were investigated using isothermal compression tests under the temperature range from 850 to $1100^{\circ}C$ and a strain rate from 0.01 to $10s^{-1}$. The flow stress decreased with increasing compression temperature and decreasing strain rate. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrheniustyped equation with the Zener-Hollomon parameter was used to simulate the hot deformation behavior of AISI 4340 steel. The modification of the Zener-Hollomon parameter and lnA parameter resulted in the improvement of the calculation accuracy of the proposed constitutive model compared with the experimental flow curves. In addition, the process map of AISI 4340 steel was proposed. The instable process condition for hot deformation was predicted and its reliability was verified with the experimental observation.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

A Three-Dimensional Material Nonlinear Analysis of Reinforced Concrete (철근콘크리트의 3차원 재료비선형해석)

  • 박성수;성재표
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • Objection of this study is to present the three-dimensional material nonlinear analysis of reinforced concrete. A concrete is idealized with three-dimensional 16-node solid element including triaxial nonlinear stress-strain behavior, cracking, crushing and strain softening: a steel with three-dimensional 3 node truss element including elastic-plastic behavior with strain hardening. The cracked shear retention factor is introduced to estimate the effective shear modulus con sidering aggregate interlock after c:racking and a modified newton method is used to obtain a nu merical solution. Numerical results in a gauss point is displayed graphically. Numerical examples of Krahl's reinforced concrete beam and Hedgreds shell are selected to compare with the experimental and numerical results.

Progressive Fracture Analysis of Concrete by Boundary Element Method and its Stabilizing Technique (경계요소법에 의한 콘크리트의 파괴진행해석 및 안정화 기법)

  • 송하원;전재홍
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.205-212
    • /
    • 1996
  • This paper presents progressive fracture analysis of concrete using boundary element method and its stabilizing technique. To determine ultimate strength and to predict nonlinear behavior of concrete during progressive crack growth, the modelling of fracture process zone is done based on Dugdale-Barenblatt model with linear tension-softening curve. We regulate displacement and traction boundary integral equation of solids including crack boundary and analyze progressive fracture of concrete beam and compact tension specimen. Also a numerical technique which considers the growth of stress-free crack of concrete during the analysis and removes snapback of postpeak behavior is proposed.