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Abstract

This paper describes the application of our recently developed two-phase model for flow-induced crys-
tallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spin-
ning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension
and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the
freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-
speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are
also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure
at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the
surface. Film blowing is simulated using a “quasi-cylindrical” approximation for the momentum equations,
and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble
cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape
are predicted to be in agreement with experimental observations, and the location of the frost line is pre-
dicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model
is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both

of which are related to the physical and mechanical properties of the final product.

1. Introduction

Fiber spinning and film formation are polymer processes
of great commercial and technological importance. High-
speed non-isothermal melt spinning is associated with a
concentrated neck-like deformation and the development
of high stresses that result in flow-induced crystallization
(FIC). Key features to be captured in any model simulation
are: neck-like deformation under high-speed conditions
and the associated velocity, stress, crystallinity, orientation
and temperature profiles. Likewise, in film blowing, one
wishes to be able to predict the location of the frost line
and the associated stress at the freeze point, as well as bub-
ble radius, thickness, temperature, crystailinity, and ori-
entation profiles, for given sets of processing conditions.
Past models for these processes have attempted to incor-
porate FIC through single- phase constitutive equations
(Newtonian and viscoelastic) that couple the crystallization
to the model relaxation times or viscosity. In a recent paper
(Doufas et al., 1999), we derived a molecular-based
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rheological model for flow-induced crystallization that
explicitly accounts for both the untransformed melt
phase and the semi-crystalline solid phase. The FIC
model has been successfully applied to laboratory rheo-
metric flows (Doufas et al., 1999) and melt spinning
(Doufas et al., 2000a,b; Doufas and McHugh, 2001a)
and excellent agreement with experimental data was
found over a wide range of processing conditions and
materials. The purpose of this paper is to review the FIC
model and illustrate its application to the simulation of
fiber spinning and film blowing.

2. Model and equations

Figure 1 shows a sketch of our two-phase model for FIC.
The melt (untransformed phase) is modeled as a modified
Giesekus fluid with finite chain extensibility, characterized
by the conformational tensor ¢. The semi-crystalline phase
is approximated as a collection of rigid rods that grow and
orient in the flow field, and is characterized by the ori-
entational tensor S and the equilibrium degree of crystal-
linity, ¢. Brackets of a quantity denote averaging with
respect to the appropriate diffusion equation distribution
function. Crystallization under conditions of both under-
cooling and deformation results in the transfer of statistical
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Fig. 1. Schematic representation of molecular-based model for
flow-induced crystallization.

segments from the melt to the semi-crystalline phase. The
mass fraction of statistical segments in the semi-crystalline
medium (degree of transformation), x, is given by N/N,,
where N is the number of statitistical segments in the semi-
crystalline phase at any time during the transformation and
N, is the number of statistical segments initially in the melt.
The crystallization rate is approximated by a non-isother-
mal Avrami/Nakamura equation modified with a frame-
invariant enhancing factor related to the stored free energy
to mimic the effect of flow on the kinetics of the phase
transition. Relaxation times of both phases are assumed to
be functions of crystallinity and temperature. In what fol-
lows, the defining equations of the model and associated
transport balances for fiber spinning are most conveniently
expressed in terms of the dimensionless variables defined
in the Appendix.

2.1. Evolution equations
The evolution equations for the microstructural variables
¢, § and x are summarized below.

_ E .
Sy = _ﬁ&%[ W+ (W) 1-2(W) (uuun)  (2)
B Ko (D=0 -n(1-0)1" ™ "exp (Eert) 3)

The superscript * denotes a dimensionless quantity,
(see Appendix for non-dimensionalizations) the sub-
script (1) denotes the upper convected derivative, and D/
Dt denotes the substantial derivative. §is the identity ten-
sor, ¢ is the molecular (Giesekus) parameter, ¢ is an
anisotropic drag parameter of the semi-crystalline phase,
A Ay are the amorphous and semi-crystalline relaxation
times, respectively, E is the non-linear spring force fac-
tor, u is the unit vector along the semicrystalline rod axis
(Fig. 1), K,, is the temperature dependent Avrami con-
stant under quiescent conditions, m is the Avrami expo-
nent under flow conditions, and & is a model parameter. In
the absence of a fundamental theory, m is set equal to

2

unity to capture the lowering of growth dimensionality
under flow. The dependence of the system relaxation
times on the transformation are assumed to be as follows:

Melt phase: A,(x,T) = A,,(D)(1-x)* )

Semi-crystalline phase: A.(x,7) = cA,(T) exp(Fx) (5)

where A,, is the characteristic Hookean relaxation time of
the melt (temperature dependent) in the absence of crys-
tallization and ¢ and F are model parameters discussed in
Doufas et al (2000a). The melt relaxation time is obtained
from the zero-shear viscosity assuming constant shear
modulus.

2.2. Extra stress tensor

The expressions for the extra stress tensor are derived
based on polymer kinetic theory principles. Prior to the
onset of crystallization, the extra stress is given by

T = Ec*-§ ©)

where E is obtained from the inverse Langevin function
(Doufas et al., 1999).

After the onset of crystallization, the total extra stress is
calculated from:

= I—I_L:}c*-8+3S+6Debn(V*v*)T:(uuuu> @)

where the Deborah number for the semi-crystalline phase,
Deb,, is given by Deb, =v, A./L. In Eq. (7), the dyad
product is calculated using a hybrid decoupling approxi-
mation:

. L(Vrvr (7w
(V¥v*) (uuuu)=(1-w)- )
+51 (Viv9).88

+8 - (VFv*4( V*v*)T)+( VEp* 4 ( V*v*)T) . S}
+w(VErH):S (S+%5) (8)

w=1-27 det (S+%6) ©9)

The total extra stress tensor 7* is expressed in terms of the
microstructural variables ¢*, § and x through Egs. (1-3).
The model equations, along with the macroscopic trans-
port equations (mass, momentum and energy) for the poly-
mer process, contain quantities and parameters that fall into
3 categories: (i) properties that can be determined a-priori
from measurements of the melt. These include the rheo-
logical properties of the melt (zero-shear-rate viscosity, 0,,
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o, and G, the shear modulus), physical properties such as
the polymer density, thermal conductivity, surface tension
and heat capacities, and quiescent crystallization param-
eters, such as the equilibrium melting point, 7,°, and the
Avrami crystallization parameter (K,,), (ii) variables that
relate to the processing conditions being modeled, and, (iii)
parameters that are material dependent and are calibrated
from experimental data for the given process. These
include the model parameters, ¢ and F, which are related to
the assumed dependence of the semi-crystalline phase
relaxation time on the degree of transformation (Eq. 5), the
crystallization rate-enhancement factor, >, and the rigid rod
anisotropy factor, 0. Model predictions (velocity, temper-
ature, stress profiles and location of freeze point) are most
sensitive to the parameters F' and >. Extensive discussions
of the evaluation of these variables and parameters, and a
listing of values used for modeling the melt spinning of the
nylons and PET summarized in the next sections, are given
elsewhere (Doufas et al., 2000a,b; Doufas and McHugh,
2001a).

3. Simulation of fiber spinning
Figure 2 shows a schematic of the fiber spinning process,

illustrating the relevant system variables which are the fiber
diameter, temperature, and axial spin line velocity profiles.

Mass throughput W
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b v =v
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e
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\\\\ Take-up roll

Fig, 2. Schematic of fiber spinning process with system vari-
ables.
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The quench air velocity, v,, and temperature, 7,, are also
important process variables. Shear stresses developed in
the spinneret are assumed to have relaxed at the point of
maximum die swell (z = 0), and the flow field during spin-
ning (0 # z # L) is considered to be a locally homogeneous
uniaxial extension. Polymer melt exits the spinneret at a
mass flow rate, W. The combination of uniaxial tensile
forces acting on the filament during flow and the cooling
of the spinline will induce crystallization (at a point where
the filament temperature drops below T,,°), and an eventual
locking-in of the fiber diameter at the freeze point. The
spinline tension varies along the fiber length due to the
combined effects of air drag and inertia, and is also
strongly influenced by structural changes brought about by
the flow-induced crystallization. For high-speed condi-
tions, a concentrated deformation (necking) process occurs
over some short region of the spin line, immediately prior
to the freeze point, after which filament deformation ceases
and the neck stabilizes.

The dimensionless equations for the cross-sectional aver-
aged (thin filament approximation) steady state transport
balances are the following

Momentum balance

dvi  d [ 1h - 1% D, “32 dvE
DIXZ; = E[T}—Dz(ﬁ - Vr)+E-D4( vE) gy
(10)

where Dy, D,, D;, D,, and v, are dimensionless quantities
defined in the Appendix. The momentum balance includes
all relevant effects. The term on the left accounts for iner-
tia, while the terms on the right arise, respectively, from the
arca-averaged tensile force, air drag, gravity, and surface
tension.

Equation of energy

¥ & *

O =D Ty e B S )
where Ds, Dg, D;, and T, are dimensionless quantities
defined in the Appendix. The three terms on the right hand
side include heat transfer by convection, viscous dissipa-
tion, and crystallization, respectively. The overall heat
capacity in the parameters, Ds-D5, is temperature and crys-
tallinity dependent in general (Doufas er al., 2000a,b;
2001a). Substitution of the constitutive equations into the
transport equations leads to a set of highly coupled, non-
linear differential equations for the microstructural vari-
ables (¢* and S tensors and x) and the macroscopic velocity
and temperature fields. These are solved as an initial value
problem with a fourth-order, Runge-Kutta algorithm com-
bined with a shooting method (Doufas ef al., 2000a,b;
Doufas and McHugh, 2001a).
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3.1. Fiber spinning results

Figures 3 and 4 show examples of the fit of model pre-
dictions to data for high speed spinning of nylon and PET,
respectively. In both cases, the model is able to accurately
capture the large rise in velocity or equivalent drop in
diameter associated with necking. Figure 3 also shows that
at a given take-up speed, increasing the mass flow rate
moves the freeze point (i.e., the point where the velocity
reaches a plateau) away from the spinneret. Flow bire-
fringence, An, in Fig. 4 was calculated from the degree of
transformation x and the microstructural tensors ¢, S
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Fig. 3. Profiles of axial velocity under high-speed conditions for
nylon melts for various capillary mass flow rates (take-up
speed 5300 m/min). Solid lines are model predictions.
Data from Doufas er al. (2000 b).
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Fig. 4. High-speed diameter, temperature and birefringence pro-
files for a PET melt. Take-up speed is 5947 m/min and
mass flow rate is 4.7 g/min/cap. Data from Vassilatos et
al. (1985). The lines represent model predictions.

according to the methodology described previously (Dou-
fas et al., 2000b). The final expression used for the bire-
fringence reads:

= (len1-L )= g0, 3¢ A0
Al’l—(l x)(l E) e Am+x2Szz Asc (12)

where AY, is the melt intrinsic birefringence and A?, is the
“apparent” intrinsic birefringence of the semi-crystalline
phase. A value of 0.275 for AS (Ziabicki et al., 1998) was
used in the calculations and its dependence on temperature
was neglected. AJ. is estimated from the final (plateau)
experimental value of the birefringence in the spinline cor-
responding to x= 1 (complete transformation). Figures 3
and 4 show the very good fitting and predictive capability
of the model under high-speed conditions for both nylon
and PET. In consistency with the behavior of nylon
(Haberkorn et al., 1993; Doufas et al., 2000a,b), in the
neck region, only a small fraction of crystallization actually
occurs before the polymer deformation is complete (Fig.
5). This small amount of crystallinity is sufficient to reduce
the chain mobility, impose the constraint of non-stretch-
ibility into the system and thereby lead to pinning (sta-
bilization) of the neck. As shown in Fig. 5, most of the
crystallization occurs below the neck. Similar crystallinity
profiles result for the nylon system (Doufas er al., 2000a,b).

Examples of the model predictions of tensile stress and
apparent elongational viscosity profiles for nylon simula-
tions are shown in Fig. 6. Similar results are found for PET
(Doufas and McHugh, 2001a). Tensile stress is given as the
first normal stress difference, 7, - 7,, and the elongational
viscosity is given as the ratio of the tensile stress to the
axial velocity gradient, dv/dz In consistency with the
velocity profiles, the stress profiles for low spin speeds are
smooth and the rate of increase levels off after a distance
of about 70 cm due to the occurrence of crystallization.
The extensional viscosity also shows a monotonic increase
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Fig. 5. Predicted crystallinity profile for conditions and model
parameters of Fig. 4. Note small amount of crystallinity in
the neck region (~95 cm).
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Fig. 6. Effect of take-up speed on tensile stress and apparent
elongational viscosity at constant mass throughput for
model parameters characteristic of nylon.

along the spinline (i.e., no strain softening is predicted
which is characteristic of the neck-like deformation at
high-speed spinning). At higher take-up speeds (>4500
m/min) the stress shows a sharp rise consistent with the
neck-like deformation (see Fig. 3). Near the spinneret,
the elongational viscosity is predicted to follow Troutons
ratio (ratio of elongational viscosity over shear viscosity
is approximately three) for all speeds investigated,
implying Newtonian behavior at that location. At small
and intermediate distances from the spinneret the appar-
ent elongational viscosity increases with increasing dis-
tance from the spinneret and the profiles are nearly
independent of take-up speed, reflecting the effect of
decreasing temperature on the viscosity and the absence
of any significant viscoelasticity. At high spinning
speeds (> 4500 m/min), within the neck region, the elon-
gational viscosity profile passes through a maximium,
then drops off sharply before rising rapidly again. The
presence of the maximum and sharp drop-off reflect the
non-linear viscoelasticity, which produces an apparent
strain-softening effect. This behavior is consistent with
the experimental results of Haberkorn and co-workers
(Haberkorn et al., 1993). As shown, the model also pre-
dicts the stress at the freeze point (defined as the position
along the spinline where the velocity reaches its plateau
value), which is believed to be the most important vari-
able related to the physical properties of the as-spun
fibers. Comparisons of model predictions with low-speed
data of a PET melt are shown in Fig. 7. The predictions
are based on the same set of model parameters for all the
runs shown. Figure 7 shows the smooth rise of the veloc-
ity towards a plateau value, as opposed to the concen-
trated neck-like deformation shown in Figs. 3 and 4. The
freeze point is predicted naturally and corresponds to the
development of a very small degree of crystallinity (less
than 0.1% (Doufas and McHugh, 2001a) that is still suf-
ficient to lock the system in above the glass transition
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Fig. 7. Fit of axial velocity data for low speed spinning of PET
for various take-up speeds. Data are from George (1982)
and solid lines are model fits.

temperature, as opposed to previous approaches which
arbitrarily enforce the freeze point at the glass transition
temperature.

3.2. Two-dimensional analysis

Application of the microstructural/constitutive model to
2-D simulation of melt spinning, assuming locally uniaxial
extensional kinematics in the fiber, has also been carried
out (Doufas and McHugh, 2001b). Due to the relatively
low thermal conductivity of the polymer (k,~0.2 W/(m
°K)), one expects a radial dependence to develop in the
fiber along the spinline. To account for this, one needs to
replace the radially averaged energy balance (egn (11))
with the point-wise 2-D energy equation. Radial resolution
of the temperature leads to a radial resolution of the
stresses and microstructure (chain extension, molecular ori-
entation and crystallinity) through the dependence of the
system relaxation times on temperature, and the depen-
dence of the crystallization rate on both temperature and
stress. The combination of these effects inevitably leads to
a skin-core structure where the molecular orientation, crys-
tallinity and stress are lowest at the centerline and highest
at the surfaces (Shimuzu et al., 1985) which one would like
to be able to predict. For low and intermediate spin speeds,
one expects radial variations to be smooth enough that the
assumption of uniform axial velocity will be accurate.
Thus analysis of the fiber spinning problem involves com-
bination of the point-wise 2-D energy equation with the
cross-sectionally averaged mass and momentum equations.
To carry out the analysis, the free surface domain is
mapped to a fixed rectangular computational domain by
normalizing the radial coordinate, 5, with the fiber radius,
R, through the variable ¥ = r/R(z). The resulting steady-
state dimensionless macroscopic transport equations (com-
bined mass, momentum and energy) of the process are
given below.
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Momentum balance

dvi_ d D,
D, == == = * ¥ % =3
e dz*[v* JoTi - rr)v/dt//} (Vi v )+VZ
—D,(v% )“yz_dv? (13)

dz*

The integral on the right hand side of eqn (13) arises from
the radial dependence of the stress due to the combination
of the temperature dependence of the relaxation times
(eqns (4-5)), the radial variation of the temperature (egn
(14)), and the linkage of the stress to the microstructural
variables (eqns (1-9)). The remaining terms in eqn (13) are
the same as those of eqn (10).

Energy equation

ot _p L 9 (9T, p Thothdvi o O
=Dy w(waw)w"’ DS (14)

Equation (14) accounts for the radial variation of the tem-
perature through the diffusive term on the right hand side.
As with the 1-D simulation, the last term in eqn (14) is zero
in the absence of crystallization. In the 2-D simulation,
crystallization is assumed to begin at the point along the
spinline where the radial-averaged temperature drops
below the equilibrium melting point. A complete discus-
sion of the boundary conditions and collocation/Galerkin
method used to solve the strongly coupled hydrodynamics/
energy and microstructural differential equations is given
elsewhere (Doufas and McHugh, 2001b). Material
parameters used in the computations were similar to
those used in the 1-D simulations and are also dlscussed
in the mentioned references.

3.3. Radial profiles of macroscopic variables (veloc-
ity, temperature and tensile stress)

Comparisons of experimental axial velocity and radially
averaged temperature profiles for PET and nylon with the
model predictions for the real polymer thermal conduc-
tivity (k, = 0.209 W/(mK)) and a very large conductivity
(10-100 W/(mK) - referred to as infinite conductivity) are
shown in Figures 8 and 9, respectively. Predictions of the
2-D model corresponding to infinite thermal conductivity
(i.e. k, = 10-100 W/(mK)) were identical to those of the
1-D formulation. The velocity profiles exhibit a smooth
increase towards a plateau value and are qualitatively sim-
ilar, independent of thermal conductivity. As found with
the 1-D simulations (Fig 7), the model predicts the occur-
rence of the freeze point (the point in the spinline below
which the axial velocity remains constant) naturally. The
velocity profiles exhibit some quantitative difference,
which is more pronounced for PET (Figure 8), however the
effect of thermal conductivity does not appear to be dra-
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Fig. 8. Comparison of experimental PET velocity and radially
averaged temperature profiles with model predictions at
low and infinite thermal conductivities. The data were
taken from George (1982). The units of thermal con-
ductivity in this and following figures are W/(mK).
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Fig. 9. Comparison of experimental nylon velocity and radially
averaged temperature profiles with model predictions at
low and infinite thermal conductivities. The data were
taken from Doufas et al. (2000 b). In this and following
figures, the first 200 cm (out of 300 cm) of the spinline
are shown.

matic. In general, the experimental profiles are predicted
very well, however, as shown in Figures 8 and 9, the pre-
dictions corresponding to infinite conductivity are inter-
estingly better than the predictions of the 2-D model
corresponding to the low thermal conductivity. This indi-
cates that, although the 1-D formulation does not provide
any information about radial gradients, it does do an excel-
lent job in predicting spinline experimental data. Moreover,
since the velocity profiles are in excellent agreement with
the experimental data, the predicted tensile profiles to be
discussed are quite reliable. As will be shown, similar to
the 1-D formulation, the 2-D model also predicts the stress
below the freeze point down to the take-up roll device nat-
urally, despite the diminishing strain rate. In both cases, the
process is simulated from the spinneret to the take-up roll
device without the need to impose arbitrary solidification

Korea-Australia Rheology Journal
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Fig. 10. Temperature radial profiles for PET at two axial posi-
tions and thermal conductivities. Top: z =4.5 cm, botom:
z=150 cm. The curves are model predictions corre-
sponding to the conditions of Figure 7.

criteria.

The evolution of the predicted radial temperature profiles
at two axial positions along the spinline for PET at low
thermal conductivity and their comparison with the radially
uniform profile at high conductivity, are shown in Figure
10. At the smaller axial distance, the radial resolution is
predicted to be higher (14°C difference between the center
and surface) and sharper than the radial resolution at the
take-up roll at z = 150 cm (1.2° difference, i.e. essentially
uniform radial profile within experimental error). There-
fore, the radial resolution of temperature collapses at rel-
atively large distances from the spinneret, most likely due
to the very small fiber diameter. On the other hand, as
shown in Figure 11, the tensile force varies radially at the
freeze point (z = 120 cm) by a factor of 28% relative to the
stress at the centerline, despite the collapse of the radial
temperature distribution at this location. This is a direct
consequence of the radial variation of the microstructural
variables, which lock in towards the freeze point, pre-
serving their radial radial non-uniformity, despite the uni-
formity of the temperature after that point. On the other
hand, as also shown in Figure 11, infinite thermal con-
ductivity leads to uniform stress and therefore uniform
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Fig. 11. Tensile stress radial profiles for PET at various axial
positions and thermal conductivities. Top: z = 4.5 cm,
bottom: z = 120 cm. The curves are model predictions
corresponding to the conditions of Figure 7.

properties.

3.4. Radial distribution of microstructure

Amorphous microstructure

Radial resolution of the amorphous chain extension rel-
ative to the quiescent coiled state (relative extension, RE)
is computed using the following

_ tr c*
RE= A/3(1—x)/Eq s

where E, is the non-linear force factor under quiescent con-
ditions. The factor E/(1-x) corrects for the loss of amor-
phous statistical strands due to crystallization and the
deviation of the amorphous chains from the Gaussian dis-
tribution under flow conditions. Profiles of the relative
extension along the spinline at the fiber center and the sur-
face at low thermal conductivity, as well as the uniform
profile at infinite thermal conductivity, for PET. are illus-
trated in Figure 12. The profiles are qualitatively similar,
namely the amorphous chains have a random coil con-
figuration at the spinneret exit (RE = 1) consistent with the
Newtonian behavior of PET at that location, and the chain
extension increases smoothly and locks in after a certain
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profile (k, — <o) along the spinline for PET. The curves
are model predictions corresponding to the conditions of
Figure 7.
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Fig. 13. Relative amorphous extension radial profiles for PET at
the take-up roll device (z = 150 cm) at low and infinite
thermal conductivities. The curves are model predictions
corresponding to the conditions of Figure 7.

distance (vicinity of freeze point) at all radial locations and
in the case of k, — oo as well. The chain extension at the
surface is predicted to be higher than at the centerline (by
a factor of about 9% at the take-up roll), consistent with the
tensile stress profiles (Figure 11). Clearly, the model pre-
dicts a skin-core structure, which is consistent with exper-
imental observations (Shimizu et al., 1985). This is more
clearly illustrated in Figure 13. As noted above, the micro-
structure preserves its radial variation throughout the spin-
line, although the temperature radial distribution collapses
after a certain distance. This is attributed to the fact that as
the system cools and approaches the freeze point, the
microstructures of both the amorphous material and the
entrapped infinitesimal crystals that formed above the glass
transition temperature lock-in. Below the freeze point,
although the temperature distribution becomes radially uni-

8

form, it does not have any effect on the locked-in micro-
structure. As shown in Figure 13, infinite thermal
conductivity results in radially uniform chain extension,
reflecting the uniform temperature profile (Figure 11).
Therefore, finite thermal conductivity leads to radially non-
uniform amorphous microstructure, which is irreversible,
i.e., it does not convert to uniform despite the eventual tem-
perature uniformity over the fiber cross-section at low ther-
mal conductivity. Profiles of the orientation factor of the
infinitesimal crystals are similar to the profiles of the rel-
ative extension (Doufas and McHugh, 2001b).

An interesting observation, independent of thermal con-
ductivity, is that the overall (macroscopic) amount of
stretch experienced by the filament, calculated from the
ratio of the take-up velocity to the velocity at the spinneret
exit (draw ratio = 53), is considerably higher than the
molecular stretching (RE=3 at the end of the spinline).
This behavior is attributed to extensive slippage of the
entanglements within the polymer network (viscoelastic
behavior).

Semi-crystalline microstructure

The semi-crystalline orientation factor f,., which gives
the average molecular orientation of the semi-crystalline
phase with respect to the z- axis, is calculated in our model
as follows:

- |3¢.¢=3
fe= | 58:8 =35, (16)

The evolution of the centerline, surface and average f,. pro-
files together with the uniform f;. profile at k, — oo, along
the spinline for nylon are demonstrated in Figure 14. All
the profiles are similar qualitatively; at small distances
below the spinneret the molecular orientation of the infin-
itesimal crystals is isotropic (f;. = 0) and develops smoothly
along the spinline following the flow deformation, and
finally locks-in at the vicinity of the freeze point reaching
a plateau value. The uniform orientation profile corre-
sponding to k, — oo is predicted to approach the cross-sec-
tionally averaged profile corresponding to low k, and the
plateau average orientation practically coincides with the
plateau uniform orientation, reflecting the behavior of the
tensile stress. Due to the locking-in of the microstructure
caused by the filament cooling and crystallization that pre-
vent the molecules from relaxing, the molecular orientation
preserves its radial non-homogeneity (Figures 14, 15)
despite the collapse of the temperature radial profile at
large distances from the spinneret. The same is true for the
crystallinity profiles shown in Figures 16, 17. While the
model predicts a radially uniform molecular orientation in
the limit k, — oo (Figure 17) due to radial homogeneity of
the temperature, in the case of low thermal conductivity the
orientation at the surface is higher relative to the centerline
orientation (by a factor of about 50% at z = 150 cm) sup-
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The curves are model predictions corresponding to the
conditions of Figure 8.
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Fig. 15. Semi-crystalline orientation factor radial profile for
nylon at the take-up roll device (z = 300 cm) at low and
infinite thermal conductivities. The curves are model
predictions corresponding to the conditions of Figure 8.
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porting the formation of a skin-core structure. The skin-
core structure is further evidenced by prediction of higher
crystallinity at the surface than the centerline. At the take-
up roll device, the crystallinity at the surface is higher by
a factor of about 22% relative to the centerline. This behav-
ior of the crystallinity is consistent with the lower tem-
perature and higher tensile stress and molecular orientation
at the surface, both factors contributing to higher crystal-
lization rates. The radial variation for both orientation and
crystallinity is minimum (radial gradients approach zero)
towards the centerline, consistent with zero temperature
radial gradients at this location, and becomes highest at the
surface (the radial gradients are steepest at the surface as
expected). These results further enhance the statement that
if one is interested in predicting the average fiber properties
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Fig. 16. Profiles of centerline, surface and average degree of
transformation x [k, = 0.209 W/(mK)], and uniform x
profile (k, — o) along the spinline for nylon. The curves
are model predictions corresponding to the conditions of
Figure 8.
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Fig. 17. Degree of transformation radial profile for nylon at the
take-up roll device (z = 300 cm) at low and infinite ther-
mal conductivities. The curves are model predictions
corresponding to the conditions of Figure 8.

in the cross-sectional area, the 1-D formulation should be
sufficient. However, if the radial resolution of the fiber
properties is important, our 2-D formulation can provide
such information through the radial variation of the micro-
structural variables. Thus, the model can provide a useful
link between microstructure development and final fiber
properties.

4. Simulation of film blowing

A schematic of the film blowing process is shown in Fig.
18. Polymer melt exits an annular die at a mass flow rate,
W, and is simultaneously stretched in the machine (axial)
direction, z, and blown to an inflation pressure AP (denoted
DP in Fig. 18), while simultaneously being cooled by
quench air. The combination of undercooling and flow
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Fig. 18. Schematic of film blowing process and system variables.

deformation give rise to flow-induced crystallization (FIC)
(at a point where the film temperature drops below T,,°),
which stiffens the microstructure, resulting in retardation of
the bubble growth and the formation of an essentially con-
stant diameter tube after the frost line.

In order to demonstrate the ability of our FIC model to
predict the major features of film blowing, a number of
simplifying assumptions have been made in our analysis
(Doufas and McHugh, 2001¢). Inclusion of axial curvature
in the momentum balance in the framework of the Petrie
and Pearson formalism (Pearson and Petrie, 1970) leads to
numerical difficulties in that, beyond a certain degree of
crystallinity, the numerical system of equations becomes
unstable and/or multiple steady-state solutions can result.
Moreover, crystallization is not able to stop the deforma-
tion and lead to formation of a constant diameter tube.
These difficulties can be overcome by neglecting axial cur-
vature and treating the bubble as a pseudo-cylinder at each
position, in line with the work of Liu et al. (1995a,b). Con-
sistent with thin film theory [Novozhilov (1959), Kraus
(1967)], we also assume that the total stress in the thick-
ness direction, T, , is zero throughout the film. Thus the
polymer isotropic pressure p is the extra stress T,. The
effects of air drag, gravity, inertia, and surface tension are
also neglected.

The defining balance equations thus become the following:

Cross-sectionally averaged continuity equation
W = 27pRHv, a7

10

where p is the polymer density, assumed constant in the
present study, R is the local bubble radius, H is the local
bubble thickness and v, is the local velocity in the “1”
direction. In the following discussion, we will refer to v, as
“velocity”.

Cross-sectionally averaged momentum equations:
F, = 27[RHT11 = 27[7RH(T1] - Tzz) (18)

where F, is the tensile force in the z direction (constant in
all locations) and T, is total axial stress (extra stress and
isotropic pressure). ' ‘

HTy _ H(Ty—T) _
o H(oaoto)_ pp (19)

where T35 is total hoop stress (extra stress and isotropic
pressure).

Cross-sectionally averaged energy equation:

d¢

dT d
PG dz

AT _ZLVI;B[U(T— T,)+Ope(T* ~TH]+ T : Vo + pAH,

(20)

In Eq. (20), C, is the heat capacity, U is the convective heat
transfer coefficient, oy is the Stefan-Boltzmann constant
and € is the emissivity. The second term on the RHS
expresses the viscous dissipation, and the last term is
related to the release of latent heat, with AH; being the heat
of crystallization per unit mass, and ¢ (= x¢.., where ¢.. is
the final degree of crystallinity, and x, as before, is the
degree of transformation) is the average absolute degree of
crystallinity of the system (mass fraction of crystals) at the
axial position z. In the absence of crystallization, the last
term on the RHS of Eq. (20) vanishes. Axial conduction
and radiation effects are also neglected.

Neglecting axial curvature, the velocity gradient tensor W,
becomes the following:

(_ld_f‘l)_ld_R 0
Hdz ) Rdz
=Y 1dH
27PRH 0 gaz Y @D
1dR
0 0 Rdz

Similar to the fiber spinning analysis, the highly non-lin-
ear, coupled equations for the system variables that result
from substitution of Egs. (17) - (21) into Egs. (1) - (3) are
solved using a Runge-Kutta integration scheme together
with a shooting method. Details are given in Doufas and
McHugh (2001c¢). Simulation results to be shown were car-
ried out for a LDPE melt with zero-shear viscosity of
1.53%10* Pa.s and relaxation time of 0.85 s at 190°C. In all
cases, the mass flow rate was 0.15 g/s, the draw ratio was
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set to 4, the bubble radius and thickness were 0.746 cm and
0.95 mm at the exit of the die, respectively, and the axial
length from the die up to the nip rolls was L =82 cm.
When the effect of a processing condition is investigated,
all other conditions and model parameters are kept con-
stant.

4.1. Film blowing results

Figure 19 shows the effect of inflation pressure on the
bubble shape. For an inflation pressure of 250 Pa, the bub-
ble is predicted to expand, for 185 Pa the radius remains
more or less constant, and for the lower pressures of 50 Pa
and O Pa, the bubble is predicted to contract. These results
are consistent with the experimental data of Liu er al.
(1995a,b). In the limit of zero inflation pressure, our model
predicts that the bubble experiences uniaxial extension
kinematics (it contracts equally in the hoop and thickness
directions), which is also in agreement with the experi-
mental data of Han and Park (1975).

The dynamics of the temperature and degree of trans-
formation profiles for the numerical experiment with AP =

20
1.5 1
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= « « AP=50Pa
‘g 1.0 — - AP=0Pa
S
m ————————————————————
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Fig. 19. Effect of inflation pressure on bubble shape. 7, = 190°C,
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Fig. 20. Dynamics of film temperature and crystallinity, for T, =
190°C, DR = 4, and AP = 345 Pa.
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345 Pa were also evaluated. As shown in Fig. 20, the film
temperature initially decreases due to quench air cooling,
however beyond a distance above the die (~10cm), the
temperature plateaus and increases slightly due to the
release of latent heat of crystallization which dominates the
cooling effect. Upon completion of crystallization (100%
degree of transformation and 44% absolute crystallinity),
the temperature drops again due to cooling. Similar to fiber
spinning, a small amount of crystallinity (~0.01) is able to
stop the deformation and lead, in this case, to the formation
of a constant bubble diameter for all the inflation pressures
indicated. In the case of AP = 345 Pa, crystallization takes
place mostly after the frost line at about 10 cm, i.e., after
the point at which the diameter remains constant, similar
again to the behavior shown with fiber spinning. It is
important to note the freeze line is predicted naturally in
our formulation as a result of the coupling of crystallization
with the rheological behavior of the semi-crystalline sys-
tem and the macroscopic equations of the process. More-
over, in our formalism, we simulate the process from the
die up to the nip rolls and the length of the domain does not
cause any instabilities.

The extra stress differences, T)-T» and T;3-T, for AP =
345 Pa are found to increase due to the deformation expe-
rienced by the bubble and they remain constant after the
freezeline, at about 10 cm. This is a direct consequence of
crystallization which stops the deformation and locks the
stresses and microstructure. The stresses at the frost line
are inextricably related to the physical and mechanical
properties of the final film.

With regard to the effect of extrusion temperature on
the dynamics of the bubble radius and thickness, at the
higher extrusion temperatures, the bubble is found to be
more deformable and therefore to expand more [Doufas
and McHugh (2001c¢)]. In fact, both the BUR and thick-
ness reduction are found to increase with increasing
temperature. At lower temperatures, the polymer is too
stiff to expand radially and the BUR is found to be close
to unity. These predictions are also qualitatively con-
sistent with the experimental observations of Liu et al.
(1995a,b).
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Appendix

A number of dimensionless variables and quantities used
in the model equations are described below.
Dimensionless axial distance and V operator :

*=7L, V¥=VIL

Dimensionless velocity : v¥= v,/v,

Dimensionless temperature : T* = T/T,

Dimensionless ¢ tensor : ¢* = c¢K /kzT, where K, is the
Hookean spring constant of the melt chains before the
onset of crystallization [Doufas et al. (2000a)] and k5 is
the Boltzman constant.

Dimensionless extra stress tensor : T¢ = 9G, where G is
the melt shear modulus, given by G = nkpT, where n is
the number density of molecules in the system.

pvz
G
2
Air drag : D,= I—Z%M, where W is the mass flow
rate, B is the Bingham number and , is the quench air

viscosity [Doufas et al. (2000a)].

Inertia : D, =

Gravity : D;= %Q

2 172
Surface tension . Dy= (”—S—%’) , where s is the surface
tension. AWG

, where g is the acceleration of gravity.

2;2N\172

4“5‘ h ) , where h is the con-
pCiv,W.

vective heat transfer coefficient and C, is the system heat

Heat convection . Ds =(

capacity which will depend on temperature and the
degree of transformation [Doufas et al. (2000b), Doufas

and McHugh (2001a)].
G

p Cp Ta

Latent heat of crystallization : D, = % , where AH; is
the heat of crystallization per unit mhass.

Viscous dissipation : Dg =

Polymer thermal conductivity : Dg= EL—kE,
c,w
Relative velocity : v, = :—", where v,is the axial component
of the quench air velocity (taken to be zero in the present

study).

Relative temperature ,=7"
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