• Title/Summary/Keyword: Stress memory

Search Result 369, Processing Time 0.026 seconds

Effects of the fermented Zizyphus jujuba in the amyloid β25-35-induced Alzheimer's disease mouse model

  • Kim, Min Jeong;Jung, Ji Eun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Nutrition Research and Practice
    • /
    • v.15 no.2
    • /
    • pp.173-186
    • /
    • 2021
  • BACKGROUD/OBJECTIVES: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Due to the increased incidence of dementia, there is a corresponding increase concerning the importance of AD. In this study, we investigated the protective effects conferred by Zizyphus jujuba (Zj) and Zizyphus jujuba fermented by yeast (Zj-Y), on cognitive impairment in an AD mouse model. MATERIALS/METHODS: AD was induced by injecting amyloid beta25-35 (Aβ25-35) in ICR mice, and subsequently 200 mg/kg Zj or Zj-Y was administered daily for 14 days. The cognitive ability of AD mice was observed through behavioral experiments in T-maze, novel object recognition, and Morris water maze tests. We subsequently measured the levels of malondialdehyde (MDA), nitric oxide (NO), aspartate aminotransferase, and alanine aminotransferase in either tissues or serum. RESULTS: In behavioral tests, deterioration was revealed in the short- and long-term learning and memory functions in the Aβ25-35-injected control group compared to the normal group, indicating that Aβ25-35 injection impairs cognitive functions. However, administration of Zj and Zj-Y improved cognitive function in mice, as compared to the Aβ25-35-injected control mice. In addition, the Aβ25-35 induced elevations of MDA and NO in the brain, kidney, and liver were suppressed after exposure to Zj and Zj-Y. Especially, Zj-Y showed stronger scavenging effect against MDA and NO, as compared to Zj. CONCLUSIONS: Results of the present study indicate that Zj-Y exerts a protective effect on cognitive impairment and memory dysfunction, which is exerted by attenuating the oxidative stress induced by Aβ25-35.

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

Effects of tianeptine on symptoms of fibromyalgia via BDNF signaling in a fibromyalgia animal model

  • Lee, Hwayoung;Im, Jiyun;Won, Hansol;Nam, Wooyoung;Kim, Young Ock;Lee, Sang Won;Lee, Sanghyun;Cho, Ik-Hyun;Kim, Hyung-Ki;Kwon, Jun-Tack;Kim, Hak-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2017
  • Previous reports have suggested that physical and psychological stresses may trigger fibromyalgia (FM). Stress is an important risk factor in the development of depression and memory impairments. Antidepressants have been used to prevent stress-induced abnormal pain sensation. Among various antidepressants, tianeptine has been reported to be able to prevent neurodegeneration due to chronic stress and reverse decreases in hippocampal volume. To assess the possible effect of tianeptine on FM symptoms, we constructed a FM animal model induced by restraint stress with intermittent cold stress. All mice underwent nociceptive assays using electronic von Frey anesthesiometer and Hargreaves equipment. To assess the relationship between tianeptine and expression levels of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and phosphorylated cAMP response element-binding protein (p-CREB), western blotting and immunohistochemistry analyses were performed. In behavioral analysis, nociception tests showed that pain threshold was significantly decreased in the FM group compared to that in the control group. Western blot and immunohistochemical analyses of medial prefrontal cortex (mPFC) and hippocampus showed downregulation of BDNF and p-CREB proteins in the FM group compared to the control group. However, tianeptine recovered these changes in behavioral tests and protein level. Therefore, this FM animal model might be useful for investigating mechanisms linking BDNF-CREB pathway and pain. Our results suggest that tianeptine might potentially have therapeutic efficacy for FM.

Effects of Fermented Scutellaria Baicalensis Extract on H2O2 - Induced Impairment of Long-term Potentiation in Hippocampal CA1 Area of Rats (흰쥐 해마 CA1 영역에서 H2O2에 의한 장기강화 억제에 대한 발효황금 추출물의 효과)

  • Heo, Jun Ho;Rong, Zhang Xiao;Kim, Min Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.6
    • /
    • pp.356-362
    • /
    • 2019
  • Scutellaria baicalensis (SB) has widely used in the treatment for various brain diseases in the field of Oriental medicine. Biofermantation of SB can make major chemical constituents of SB to pass blood-brain barrier easily and to have more potent anti-oxidant ability. There is a little information about the contribution of fermented SB (FSB) to the formation or maintenance of the neural plasticity in the hippocampus. The purpose of this study was to evaluate effects of FSB extract on hydrogen peroxide (H2O2) - induced impairments of the induction and maintenance of long-term potentiation (LTP), an electrophysiological marker for the neural plasticity in the hippocampus. From hippocampal slices of rats, the field excitatory postsynaptic potentials (fEPSPs) were evoked by the electrical stimulation to the Schaffer collaterals - commissural fibers in the CA1 areas and LTP by theta-burst stimulation by using 64 - channels in vitro multi-extracellular recording system. In order to induce oxidative stress to hippocampal slices two different concentrations (200, 400 μM) of H2O2 were given to the perfused aCSF before and after the LTP induction, respectively. The ethanol extract of FBS with concentration of 25 ㎍/ml, 50 ㎍/ml was diluted in perfused aCSF that had 200 μM H2O2, respectively. Oxidative stress by the treatment of H2O2 resulted in decrease of the induction rate of LTP in the CA1 area with a dose - dependent manner. However, the ethanol extract of FSB prevented the reduction of the induction rate of LTP caused by H2O2 - induced oxidative stress with a dose - dependent manner. These results may support a potential application of FSB to ameliorate impairments of hippocampal dependent neural plasticity or memory caused by oxidative stress.

Theracurmin Ameliorates Cognitive Dysfunctions in 5XFAD Mice by Improving Synaptic Function and Mitigating Oxidative Stress

  • Kim, Jihyun;Kim, Jaehoon;Huang, Zhouchi;Goo, Nayeon;Bae, Ho Jung;Jeong, Yongwoo;Park, Ho Jae;Cai, Mudan;Cho, Kyungnam;Jung, Seo Yun;Bae, Soo Kyung;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 2019
  • As the elderly population is increasing, Alzheimer's disease (AD) has become a global issue and many clinical trials have been conducted to evaluate treatments for AD. As these clinical trials have been conducted and have failed, the development of new theraphies for AD with fewer adverse effects remains a challenge. In this study, we examined the effects of Theracurmin on cognitive decline using 5XFAD mice, an AD mouse model. Theracurmin is more bioavailable form of curcumin, generated with submicron colloidal dispersion. Mice were treated with Theracurmin (100, 300 and 1,000 mg/kg) for 12 weeks and were subjected to the novel object recognition test and the Barnes maze test. Theracurmin-treated mice showed significant amelioration in recognition and spatial memories compared those of the vehicle-treated controls. In addition, the antioxidant activities of Theracurmin were investigated by measuring the superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels. The increased MDA level and decreased SOD and GSH levels in the vehicle-treated 5XFAD mice were significantly reversed by the administration of Theracurmin. Moreover, we observed that Theracurmin administration elevated the expression levels of synaptic components, including synaptophysin and post synaptic density protein 95, and decreased the expression levels of ionized calcium-binding adapter molecule 1 (Iba-1), a marker of activated microglia. These results suggest that Theracurmin ameliorates cognitive function by increasing the expression of synaptic components and by preventing neuronal cell damage from oxidative stress or from the activation of microglia. Thus, Theracurmin would be useful for treating the cognitive dysfunctions observed in AD.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Effects of Fixed-intensity and Varied-intensity Electroacupuncture on Heart Rate Variability in Healthy People with Stress Task (고정자극 전침과 변동자극 전침의 정상인 스트레스에 대한 심박변이도 변화 연구)

  • Lim, Sung-Keun;Lee, Dong-Hua;Kwon, You-Jung;Lee, Jeung-Chan;Jung, Chang-Jin;Kim, Yong-Suk;Park, Kyung-Mo;Lee, Sang-Hoon
    • Journal of Acupuncture Research
    • /
    • v.28 no.2
    • /
    • pp.107-116
    • /
    • 2011
  • Objectives : This study was performed to investigate the effects of fixed-intensity and varied-intensity electroacupuncture on heart rate variability in healthy people with stress task. Methods : Forty healthy subjects were randomly assigned to either group A or group B or C. Group A received fixed-intensity electroacupuncture(F-EA) at $ST_{36}$ and $ST_{37}$. After 1 week wash out period to prevent overlapping residual effects, they received varied-intensity electroacupuncture(V-EA) in which the intensity was changed every two minutes based on individual heart rate variability at the same points. Group B received the treatments in reverse order. Group C received no intervention as a control group. Results : Control group showed a significant increase of LF and LF/HF during the 2nd working memory task, while both F-EA and V-EA did not. In addition, V-EA showed a significant increase of HF during 2nd rest while F-EA did not. Conclusions : These results suggest that F-EA and V-EA can inhibit sympathetic activation more than control group and that V-EA can enhance parasympathetic activation more than F-EA.

Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing (하모니 서치와 시뮬레이티드 어넬링을 사용한 트러스의 단면 및 형상 최적설계)

  • Kim, Bong Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In this paper, we present an optimization of truss structures subjected to stress, buckling, and natural frequency constraints. The main objective of the present study is to propose an efficient HA-SA algorithm for solving the truss optimization subject to multiple constraints. The procedure of hybrid HA-SA is a search method which a design values in harmony memory of harmony search are used as an initial value designs in simulated annealing search method. The efficient optimization of HA-SA is illustrated through several optimization examples. The examples of truss structures are used 10-Bar truss, 52-Bar truss (Dome), and 72-Bar truss for natural frequency constraints, and used 18-Bar truss and 47-Bar (Tower) truss for stress and buckling constraints. The optimum results are compared to those of different techniques. The numerical results are demonstrated the advantages of the HA-SA algorithm in truss optimization with multiple constraints.

The Study of the Subjective Symptoms according to Frontal Lobe Damage and Change in Neurocognitive Function in Traumatic Head Injury Patients (두부외상 환자에서 전두엽 손상과 신경인지기능 변화에 따른 주관적인 증상 연구)

  • Kim, Jun-Won;Han, Doug-Hyun;Kee, Baik-Seok;Park, Doo-Byung
    • Anxiety and mood
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • Objective : The purpose of this study was to analyze the correlation between symptom severity and neurocognitive factors in traumatic head injury patients. In addition, the effect of frontal lobe damage on these parameters was examined. Methods : We selected 18 patients who had brain damage for the moderate to severe traumatic brain injury (MSTBI) group, and 17 patients who met the diagnostic criteria for post-traumatic stress disorder (PTSD) without the finding of brain damage for the comparison group. For the evaluation of neurocognitive function, K-WAIS, Rey-Kim Memory Test, K-FENT, WCST, and MMPI-2 were used. Results : The results of the comparison (using the malingering scale) revealed that the values of PDS and PK, which express the severity of symptoms, and the values of the validity scale F, F (B), and F (P) were significantly higher in the overly-expressed group. F (B) in overly-expressed group and PK, Pt, and Sc in the properly-expressed group had significant correlation with the severity of symptoms. F (B), S, and Stroop error inhibition in PTSD, and PK, Pt, Sc, and MQ in MSTBI had significant correlation with the severity of symptoms. The results of the comparison based on the finding of frontal lobe damage revealed that PDS, EIQ, and MQ ware significantly higher in the group without brain damage. Conclusions : It was revealed that each neurocognitive factor was correlated with the severity of symptoms. There was a decrease in complaints or symptoms reported by the frontal lobe injury group, and this is believed to be due to degenerative change in the personality and emotional functioning of these patients following frontal lobe damage.

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (유기트랜지스터 내부 편재화 준위간 커플링에 의한 계면 전하이동의 비선형적 가속화 현상의 이해)

  • Han, Songyeon;Kim, Soojin;Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.144-152
    • /
    • 2021
  • Understanding charge transfer across the interface between organic semiconductor and gate insulator gives insight into the development of high-performance organic memory as well as highly stable organic field-effect transistors (OFETs). In this work, we firstly unveil a novel interfacial charge transfer mechanism, in which hole transfer from organic semiconductor to polymer insulator was nonlinearly boosted by localized states coupling. For this, OFETs based on rubrene single crystal semiconductor and Mylar gate insulator were fabricated via vacuum lamination, which allows stable repetition of lamination and delamination between semiconductor and gate insulator. The surfaces of rubrene single crystal and Mylar film were selectively degraded by photo-induced oxygen diffusion and UV-ozone treatment, respectively. Consequently, we found that the interfacial charge transfer and resultant bias-stress effect were nonlinearly boosted by coupling between localized states in rubrene and Mylar. In particular, the small number of localized states in rubrene single crystal provided fluent pathway for interfacial charge transport.