Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.046

Theracurmin Ameliorates Cognitive Dysfunctions in 5XFAD Mice by Improving Synaptic Function and Mitigating Oxidative Stress  

Kim, Jihyun (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Kim, Jaehoon (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Huang, Zhouchi (College of Pharmacy and Integrated Research Institute of Parmaceutical Sciences, The Catholic University of Korea)
Goo, Nayeon (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Bae, Ho Jung (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Jeong, Yongwoo (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Park, Ho Jae (Department of Oriental Pharmaceutical Science, Kyung Hee University)
Cai, Mudan (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Cho, Kyungnam (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Jung, Seo Yun (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Bae, Soo Kyung (College of Pharmacy and Integrated Research Institute of Parmaceutical Sciences, The Catholic University of Korea)
Ryu, Jong Hoon (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.27, no.3, 2019 , pp. 327-335 More about this Journal
Abstract
As the elderly population is increasing, Alzheimer's disease (AD) has become a global issue and many clinical trials have been conducted to evaluate treatments for AD. As these clinical trials have been conducted and have failed, the development of new theraphies for AD with fewer adverse effects remains a challenge. In this study, we examined the effects of Theracurmin on cognitive decline using 5XFAD mice, an AD mouse model. Theracurmin is more bioavailable form of curcumin, generated with submicron colloidal dispersion. Mice were treated with Theracurmin (100, 300 and 1,000 mg/kg) for 12 weeks and were subjected to the novel object recognition test and the Barnes maze test. Theracurmin-treated mice showed significant amelioration in recognition and spatial memories compared those of the vehicle-treated controls. In addition, the antioxidant activities of Theracurmin were investigated by measuring the superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels. The increased MDA level and decreased SOD and GSH levels in the vehicle-treated 5XFAD mice were significantly reversed by the administration of Theracurmin. Moreover, we observed that Theracurmin administration elevated the expression levels of synaptic components, including synaptophysin and post synaptic density protein 95, and decreased the expression levels of ionized calcium-binding adapter molecule 1 (Iba-1), a marker of activated microglia. These results suggest that Theracurmin ameliorates cognitive function by increasing the expression of synaptic components and by preventing neuronal cell damage from oxidative stress or from the activation of microglia. Thus, Theracurmin would be useful for treating the cognitive dysfunctions observed in AD.
Keywords
Theracurmin; Alzheimer's disease; Recognition memory; Spatial memory; Antioxidative activity; Synaptic component;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R. and Vassar, R. (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129-10140.   DOI
2 Park, S. J., Lee, J. Y., Kim, S. J., Choi, S. Y., Yune, T. Y. and Ryu, J. H. (2015) Corrigendum: Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci. Rep. 5, 14025.   DOI
3 Rosenbaum, R. S., Furey, M. L., Horwitz, B. and Grady, C. L. (2010) Altered connectivity among emotion-related brain regions during short-term memory in Alzheimer's disease. Neurobiol. Aging 31, 780-786.   DOI
4 Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katanasaka, Y., Kakeya, H., Fujita, M., Hasegawa, K. and Morimoto, T. (2011) Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 34, 660-665.   DOI
5 Schmitt, U., Tanimoto, N., Seeliger, M., Schaeffel, F. and Leube, R. E. (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162, 234-243.   DOI
6 Shadfar, S., Hwang, C. J., Lim, M. S., Choi, D. Y. and Hong, J. T. (2015) Involvement of inflammation in Alzheimer's disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch. Pharm. Res. 38, 2106-2119.   DOI
7 Shintani, E. Y. and Uchida, K. M. (1997) Donepezil: an anticholinesterase inhibitor for Alzheimer's disease. Am. J. Health Syst. Pharm. 54, 2805-2810.   DOI
8 Small, G. W., Siddarth, P., Li, Z., Miller, K. J., Ercoli, L., Emerson, N. D., Martinez, J., Wong, K. P., Liu, J., Merrill, D. A., Chen, S. T., Henning, S. M., Satyamurthy, N., Huang, S. C., Heber, D. and Barrio, J. R. (2018) Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 26, 266-277.   DOI
9 Spangenberg, E. E., Lee, R. J., Najafi, A. R., Rice, R. A., Elmore, M. R., Blurton-Jones, M., West, B. L. and Green, K. N. (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139, 1265-1281.   DOI
10 Tampellini, D., Capetillo-Zarate, E., Dumont, M., Huang, Z., Yu, F., Lin, M. T. and Gouras, G. K. (2010) Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J. Neurosci. 30, 14299-14304.   DOI
11 Tharakan, B., Hunter, F. A., Smythe, W. R. and Childs, E. W. (2010) Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock. Clin. Exp. Pharmacol. Physiol. 37, 939-944.   DOI
12 Toda, S., Miyase, T., Arichi, H., Tanizawa, H. and Takino, Y. (1985) Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem. Pharm. Bull. (Tokyo) 33, 1725-1728.   DOI
13 Vilalta, A. and Brown, G. C. (2014) Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J. Neuroinflammation 11, 58.   DOI
14 Walker, J. M. (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5-8.
15 Giubilei, F. (2016) Beyond Cholinesterase inhibition: anti-inflammatory role and pharmacological profile of current drug therapy for Alzheimer's disease. CNS Neurol. Disord. Drug Targets 15, 683-689.   DOI
16 Canales-Aguirre, A. A., Gomez-Pinedo, U. A., Luquin, S., Ramirez-Herrera, M. A., Mendoza-Magana, M. L. and Feria-Velasco, A. (2012) Curcumin protects against the oxidative damage induced by the pesticide parathion in the hippocampus of the rat brain. Nutr. Neurosci. 15, 62-69.   DOI
17 Cousins, M., Adelberg, J., Chen, F. and Rieck, J. (2007) Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Ind. Crop. Prod. 25, 129-135.   DOI
18 Dere, E., Huston, J. P. and De Souza Silva, M. A. (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 31, 673-704.   DOI
19 Grady, C. L., Furey, M. L., Pietrini, P., Horwitz, B. and Rapoport, S. I. (2001) Altered brain functional connectivity and impaired shortterm memory in Alzheimer's disease. Brain 124, 739-756.   DOI
20 Grinan-Ferre, C., Izquierdo, V., Otero, E., Puigoriol-Illamola, D., Corpas, R., Sanfeliu, C., Ortuno-Sahagun, D. and Pallas, M. (2018) Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. Front. Cell. Neurosci. 12, 224.   DOI
21 Gulland, A. (2012) Number of people with dementia will reach 65.7 million by 2030, says report. BMJ 344, e2604.   DOI
22 Gyoneva, S., Swanger, S. A., Zhang, J., Weinshenker, D. and Traynelis, S. F. (2016) Altered motility of plaque-associated microglia in a model of Alzheimer's disease. Neuroscience 330, 410-420.   DOI
23 Zhang, L., Fang, Y., Xu, Y., Lian, Y., Xie, N., Wu, T., Zhang, H., Sun, L., Zhang, R. and Wang, Z. (2015) Curcumin improves amyloid beta-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS ONE 10, e0131525.   DOI
24 Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A. and Cole, G. M. (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892-5901.   DOI
25 Yiu, A. P., Rashid, A. J. and Josselyn, S. A. (2011) Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 36, 2169-2186.   DOI
26 Yu, S. Y., Zhang, M., Luo, J., Zhang, L., Shao, Y. and Li, G. (2013) Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 47-53.   DOI
27 Zheng, K., Dai, X., Xiao, N., Wu, X., Wei, Z., Fang, W., Zhu, Y., Zhang, J. and Chen, X. (2017) Curcumin ameliorates memory decline via inhibiting BACE1 expression and beta-amyloid pathology in 5xFAD transgenic mice. Mol. Neurobiol. 54, 1967-1977.   DOI
28 Ziehn, M. O., Avedisian, A. A., Tiwari-Woodruff, S. and Voskuhl, R. R. (2010) Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab. Invest. 90, 774-786.   DOI
29 Anand, P., Kunnumakkara, A. B., Newman, R. A. and Aggarwal, B. B. (2007) Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807-818.   DOI
30 Hashimoto, M., Imamura, T., Tanimukai, S., Kazui, H. and Mori, E. (2000) Urinary incontinence: an unrecognised adverse effect with donepezil. Lancet 356, 568.   DOI
31 Bakhtiari, M., Panahi, Y., Ameli, J. and Darvishi, B. (2017) Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomed. Pharmacother. 93, 218-229.   DOI
32 Barnes, C. A. (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74-104.   DOI
33 Brown, G. C. (2015) Living too long: the current focus of medical research on increasing the quantity, rather than the quality, of life is damaging our health and harming the economy. EMBO Rep. 16, 137-141.   DOI
34 Calhoun, M. E., Jucker, M., Martin, L. J., Thinakaran, G., Price, D. L. and Mouton, P. R. (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J. Neurocytol. 25, 821-828.   DOI
35 Kitazawa, M., Cheng, D., Tsukamoto, M. R., Koike, M. A., Wes, P. D., Vasilevko, V., Cribbs, D. H. and LaFerla, F. M. (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J. Immunol. 187, 6539-6549.   DOI
36 Hauss-Wegrzyniak, B., Lynch, M. A., Vraniak, P. D. and Wenk, G. L. (2002) Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp. Neurol. 176, 336-41.   DOI
37 Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A. and Wirths, O. (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol. Aging 33, 196.e29-196.e40.   DOI
38 Karran, E. and De Strooper, B. (2016) The amyloid cascade hypothesis: are we poised for success or failure? J. Neurochem. 139 Suppl 2, 237-252.   DOI
39 Kim, J. M., Kim, D. H., Lee, Y., Park, S. J. and Ryu, J. H. (2014) Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory. Brain Res. 1552, 17-25.   DOI
40 Kingston, A., Wohland, P., Wittenberg, R., Robinson, L., Brayne, C., Matthews, F. E. and Jagger, C.; Cognitive Function and Ageing Studies collaboration (2017) Is late-life dependency increasing or not? A comparison of the Cognitive Function and Ageing Studies (CFAS). Lancet 390, 1676-1684.   DOI
41 McClure, R., Yanagisawa, D., Stec, D., Abdollahian, D., Koktysh, D., Xhillari, D., Jaeger, R., Stanwood, G., Chekmenev, E. and Tooyama, I. (2015) Inhalable curcumin: offering the potential for translation to imaging and treatment of Alzheimer's disease. J. Alzheimers Dis. 44, 283-295.   DOI
42 Meyer, D., Bonhoeffer, T. and Scheuss, V. (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82, 430-443.   DOI
43 Mishra, S. and Palanivelu, K. (2008) The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Ann. Indian Acad. Neurol. 11, 13-19.   DOI
44 Morellini, F. (2013) Spatial memory tasks in rodents: what do they model? Cell Tissue Res. 354, 273-286.   DOI