• Title/Summary/Keyword: Stress intensity factors

Search Result 578, Processing Time 0.037 seconds

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

Intensity Factors for a Branched Crack in a Semi-Infinite Plate Under Tension and Bending Moments (인장과 굽힘을 받는 반 무한 평판내의 분기균열에 대한 강도계수)

  • 김유환;범현규;박치용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.461-464
    • /
    • 2000
  • A branched crack in a semi-infinite plate under tension and bending moment is considered. Intensity factors of the stress and moment for the branched crack are evaluated. The stress intensity factors are obtained by using the finite element method and the J-based mutual integral. The moment intensity factors are calculated by extrapolating the values of the moment near the crack tip. Approximate expressions are also obtained as functions of the branched crack length and branching angle.

  • PDF

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Study on the Stress Singularity of Interface Crack by using Boundary Element Method (경계요소법을 이용한 계면균열의 응력특이성에 관한 고찰)

  • Cho, Chong-Du;Kwahk, Si-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.197-204
    • /
    • 1999
  • The boundary element method was used for studying singularities of an interface crack with contact zones. The iterative procedure is applied to estimate the contact zone size. Because the contact zone size was extremely small in a tension field, a large number of Gaussian points were used for numerical integration of the Kernels. Stress extrapolation method and J-integral were used ofr determining stress intensity factors. When the interface crack was assumed to have opened tips, oscillatory singularities appear near the tips of the interface crack. But the interface crack with contact zone which Comninou suggested had no oscillatory behavior. The contact zone size under shear loading was much larger than that under tensile. The stress intensity factors computed by stress extrapolation method were close to those of Comninou's solution. And the stress intensity factor evaluated by J-integral was similar to that by stress extrapolation method.

  • PDF

Determination of Thermal Dtress Intensity Factors for the Interface Crack under Vertical Uniform Heat Flow (수직 균일 열유동하에 있는 접합 경계면 균열의 열응력세기계수 결정)

  • 이강용;설창원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.201-208
    • /
    • 1991
  • In case that an interface crack exists in an infinite two-dimensional elastic bimaterial, the crack surface is insulated under traction free and the uniform heat flow vertical to the crack from infinite boundary is given. Temperature and stress potentials are obtained by using complex variable approach to solve Hilbert problems. The results are used to obtain thermal stress intensity factors. Only mode I thermal stress intensity factor occurs in case of the homogeneous material. Otherwise, mode I and II thermal stress intensity factor is much smaller than one of mode II.

Determination of the Stress Intensity Factor by the Method of Caustics (CAUSTICS방법에 의한 응력확대계수 결정)

  • Kim, S.C.;Lee, O.S.;Han, M.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.8 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The optical method of reflected and transmitted caustics has been utilized in mechanics investigations. This relatively new experimental technique has been successfully applied on various fracture analysis such as static and dynamic c rack propagation studies, some elasticity problems and contact stress, etc, In this study, the stress intensity factors in thin polycarbonate specimens, a kind of optically anisotropic material, under Mode I loading condition are estimated by the method of caustics. The values of stress intensity factors obtained from theoretical caustics shape are compared by the experiment. It is confirmed that the two stress intensity factors agree well with Srawley's solution.

  • PDF

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • Heo, Seong-Pil;Yang, Won-Ho;Jeong, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Dynamic stress intensity factors for two parallel cracks in an infinite orthotropic plate subject to an impact load

  • Itou, Shouetsu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.697-708
    • /
    • 2009
  • Stresses are solved for two parallel cracks in an infinite orthotropic plate during passage of incoming shock stress waves normal to their surfaces. Fourier transformations were used to reduce the boundary conditions with respect to the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded to a series of functions that are zero outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.

Analysis of Crack Growth in the Stiffened Panels by using Finite Element Method (유한요소법을 이용한 보강판의 균열거동해석)

  • 이환우;전원석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.197-202
    • /
    • 2000
  • A simple numerical procedure is presented to determine the stress intensity factors for crack in a stiffened panel subjected to a uniaxial uniform stress normal to the crack. Two types of stiffened panels are analyzed by the finite element method for various values of crack lengths, stiffness ratios, and stiffener spacings. From the finite element solution, the stress intensity factors were determined by using hybrid extrapolation method. Results are presented in graphical forms for upper mentioned parameters.

  • PDF