Browse > Article
http://dx.doi.org/10.12989/scs.2019.31.1.043

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method  

Cho, J.R. (Department of Naval Architecture and Ocean Engineering, Hongik University)
Publication Information
Steel and Composite Structures / v.31, no.1, 2019 , pp. 43-51 More about this Journal
Abstract
This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.
Keywords
functionally graded materials (FGM); non-homogeneous material; mixed-mode stress intensity factor (SIF); modified interaction integral; near-tip grid refinement;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traveling a plate", J. Appl. Mech., 24, 361-364.   DOI
2 Jabbari, M., Sohrabpour, S. and Eslami, M.R. (2002), "Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads", Int. J. Pressure Vessel. Piping, 79(1), 493-497.   DOI
3 Kawasaki, K. and Watanabe, R. (2002), "Thermal fracture behavior of metal/ceramic functionally graded materials", Eng. Fract. Mech., 69(14-16), 1713-1728.   DOI
4 Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., Int. J., 23(1), 1-16.   DOI
5 Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Methods Eng., 53, 1903-1935.   DOI
6 Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704.
7 Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697.   DOI
8 Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications, (1st Edition), CRC Press.
9 Anlas, G., Santare, M.H. and Lambros, J. (2000), "Numerical calculation of stress intensity factors in functionally graded materials", Int. J. Fracture, 104, 131-143.   DOI
10 Apalak, M.K. (2014), "Functionally graded adhesively bonded joints", Rev. Adhesion Adhesive, 1, 56-84.   DOI
11 Atkinson, C. and List, R.D. (1978), "Steady state crack propagation into media with spatially varying elastic properties", Int. J. Eng. Sci., 16, 717-730.   DOI
12 Ayhan, A.O. (2009), "Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements", Int. J. Solids Struct., 46(3-4), 796-810.   DOI
13 Menasria, A, Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
14 Konda, N. and Erdogan, F. (1994), "The mixed mode crack problem in a non-homogeneous elastic medium", Eng. Fract. Mech., 47(4), 533-545.   DOI
15 Liu, K.Y., Long, S.Y. and Li, G.Y. (2008), "A meshless local Petrov-Galerkin method for the analysis of cracks in the isotropic functionally graded material", Comput. Model. Eng. Sci., 7(1), 43-57.
16 Mahbadi, H. (2017), "Stress intensity factor of radial cracks in isotropic functionally graded solid cylinders", Eng. Fract. Mech., 180, 115-131.   DOI
17 Rao, B.N. and Rahman, S. (2000), "An efficient meshless method for fracture analysis of cracks", Comput. Mech., 26, 398-408.   DOI
18 Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318.   DOI
19 Miyamoto, Y., Kaysser, W.A., Rabin, B.H. and Kawasaki, A. (2013), Functionally Graded Materials: Design. Processing and Applications, Springer Science & Business Media.
20 Noda, N. (1999), "Thermal stresses in functionally graded materials", J. Thermal Stress., 22(4-5), 477-512.   DOI
21 Rao, B.N. and Rahman, S. (2003), "Mesh-free analysis of cracks in isotropic functionally graded materials", Eng. Fract. Mech., 70, 1-27.   DOI
22 Reiter, T. and Dvorak, G.J. (1998), "Micromechanical models for graded composite materials: II. Thermomechanical loading", J. Phys. Solids, 46(9), 1655-1673.   DOI
23 Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216.   DOI
24 Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., Int. J., 14(2), 103-115.
25 Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270.
26 Belytschko, T., Lu, Y.Y., Gu, L. and Tabbara, M. (1995), "Element-free Galerkin methods for static and dynamic fracture", Int. J. Solids Struct., 32(17-18), 2547-2570.   DOI
27 Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126.   DOI
28 Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environmental using an accurate theory", Steel Compos. Struct., Int. J., 27(3), 311-325.
29 Bounouara, F., Benrahou, K., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249.   DOI
30 Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., Int. J., 68(6), 661-675.
31 Vel, S.S. and Goupee, A.J. (2010), "Multiscale thermoelastic analysis of random heterogeneous materials, Part I: microstructure characterization and homogenization of material properties", Comput. Mater. Sci., 48, 22-38.   DOI
32 Sidhoum, I.A., Boutchicha, D., Benyoucef, S. and Tounsi, A. (2017), "An original HSDT for free vibration of functionally graded plates", Steel Compos. Struct., Int. J., 25(6), 735-745.
33 Sukumar, N., Moran, A. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Methods Eng., 43, 839-887.   DOI
34 Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "Crack propagation in graded composites", Compos. Sci. Technol., 65(2), 201-220.   DOI
35 Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710.   DOI
36 Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., Int. J., 22(1), 161-182.   DOI
37 Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165.   DOI
38 Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., Int. J., 14(6), 519-532.
39 Rizov, V.I. (2017), "Fracture analysis of functionally graded beams with considering material nonlinearity", Struct. Eng. Mech., Int. J., 64(4), 487-494.
40 Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1) 19-30.
41 Braun, J. and Sambridge, M. (1995), "A numerical method for solving partial differential equations on highly irregular evolving grids", Nature, 376, 655-660.   DOI
42 Brighenti, R. (2005), "Application of the element-free Galerkin meshless method to 3-D fracture mechanics problems", Eng. Fract. Mech., 72, 2808-2820.   DOI
43 Ching, H.K. and Batra, R.C. (2001), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 2(2), 273-289.
44 Cho, J.R. (2016), "Stress recovery techniques for natural element method in 2-D solid mechanics", J. Mech. Sci. Technol., 30(11), 5083-5091.   DOI
45 Cho, J.R. and Ha, D.Y. (2002), "Optimal tailoring of 2D volumefraction distributions for heat-resisting functionally graded materials using FDM", Comput. Methods Appl. Mech. Engrg., 191, 3195-3211.   DOI
46 Cho, J.R. and Lee, H.W. (2006), "A Petrov-Galerkin natural element method securing the numerical integration accuracy", J. Mech. Sci. Technol., 20(1), 94-109.   DOI
47 Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50, 609-614.   DOI
48 Dolbow, J.E. and Gosz, M. (2002), "On the computation of mixedmode stress intensity factors in functionally graded materials", Int. J. Solids Struct., 39(9), 2557-2574.   DOI
49 Zhang, Ch., Sladek, J. and Sladek, V. (2004), "Crack analysis in unidirectionally and bidirectionally functionally graded materials", Int. J. Fract., 129, 385-406.   DOI
50 Dhaliwal, R.S. and Singh, B.M. (1978), "On the theory of elasticity of a nonhomogeneous medium", Int. J. Elasticity, 8, 211-219.   DOI
51 Eischen, J.W. (1987), "Fracture of nonhomogeneous materials", Int. J. Fracture, 34, 3-22.   DOI
52 Gu, P., Dao, M. and Asaro, R.J. (1999), "A simplified method for calculating the crack tip field of functionally graded materials using the domain integral", J. Appl. Mech., 66(1), 101-108.   DOI
53 El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
54 Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded materials plates", Steel Compos. Struct., Int. J., 27(1), 109-122.
55 Giannakopulos, A.E., Suresh, S. and Olsson, M. (1995), "Elastoplastic analysis of thermal cycling: layered materials with compositional gradients", Acta Metall. Mater., 43(4), 1335-1354.   DOI