• 제목/요약/키워드: Stress increment

검색결과 316건 처리시간 0.03초

잔류응력에 의한 피로균열면 형상변화 및 수명예측 (Fatigue Crack shape Variations by a Residual Stress and Fatigue Life Predition)

  • 강용구;서창민;박원종
    • 한국해양공학회지
    • /
    • 제7권2호
    • /
    • pp.68-78
    • /
    • 1993
  • Fatigue crack shape variation by a residual stress during crack growth and life predition are studied. An analytical method is presented to predict the influence of a residual stress due to heattreatment on crack shape variations. Computer simulation results using this me thod are graphically shown that crack growth rate to surface direction are decreased due to compressive residual stress exisiting in surface area. These results are commpared with experimental results. The fatigue life is also predicted by computer simulation of crack aspect ratio variation which is based on the surface crack length increment per unit cycle calculated from a-N diagram. Predited life is about 12 percent lower than experimental life.

  • PDF

교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향 (Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

충격하중이 작용하는 평판의 동적 응력 해석 (Dynamic Stress Analysis on Impact Load in 2-Dimensional Plate)

  • 황갑운;조규종
    • 전산구조공학
    • /
    • 제8권1호
    • /
    • pp.137-146
    • /
    • 1995
  • 본 논문에서는 최근 관심이 증대되고 있는 충격하중에 의해 시간의 흐름에 따라 형성되는 구조물의 응력분포 양상을 유한요소 해석적으로 고찰하기 위하여 동적 응력 해석 프로그램을 개발하였다. 유한요소 해석에 의하면, 종방향 응력파는 충격하중이 작용하는 방향과 동일한 방향으로 진행하며, 응력파 선단의 속도와 모양은 이론해석에 의한 결과와 같음을 알 수 있다. 또한 종파의 진행방향에 45.deg. 방향으로 전단파가 발생하여 진행함을 알 수 있으며, 전단파의 속도는 종파의 1/2이 되고, 종파보다 전단파의 강도가 큼을 알 수 있다.

  • PDF

응력완화 검사(stress relaxation test)에 의한 도토리묵의 물리적 특성 (Rheological Properties of Acorn Flour Gels by Stress Relaxation Test)

  • 김영아;이혜수
    • 한국식품조리과학회지
    • /
    • 제1권1호
    • /
    • pp.53-56
    • /
    • 1985
  • 6%, 8%, 10%의 도토리묵에 데여 응력완화검사 (stress relaxation test)를 실시하여 전형적인 응력완화곡선 (stress relaxation curve)을 구하였다. 연속잔차법 (successive residual method)을 사용하여 완화곡선을 분석한 결과, 도토리묵은 spring 하나에 Maxwell 모형이 세개인 7-element, generalized Maxwell model 로 해석할 수 있었다. 또한 도토리묵가루의 농도가 커질수록 도토리묵의 평형탄성율(E$_{e}$) 과 탄성율( $E_1$, $E_2$, $E_3$)이 증가하였다.

  • PDF

극한하중상태에서 비부착 긴장재의 응력평가에 관한 실험연구 (Experimental Study on Stress Evaluation Study on Stress Evaluation of Unbonded Tendon under Ultimate Load)

  • 임재형;문정호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.519-524
    • /
    • 1998
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the experimental study, a test program with 14 beams and slabs was planed to identify the contribution of each important variable. The variables are (1) the effective prestress, (2) the concrete strength, (3) the amount of tendons (4) the amount of bonded reinforcements, (5) the loading type, (6) the span/depth ratio. It was found that the tendon stress increment decreases as the effective prestress increases. Also, the contributions of concrete strength, amount of tendons, bonded reinforcements, and loading type were observed to affect on tendon stresses. However, the tendon stress increments were minimal at high values of span/depth in contrast with the ACI Code.

  • PDF

원위치 관입시험을 이용한 비배수 점토의 유효응력 산정 (Estimation of Effective Stress for Undrained Clays using In-situ Penetration test)

  • 조성환;서경범;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.990-996
    • /
    • 2010
  • In this study, a method for estimating the effective stress of clays using in-situ penetration test(PCPT) result is proposed. The proposed method is based on a correlation between the PCPT results and strength increment ratio. According to proposed method, no additional testing procedure for collecting undisturbed soil sample is required, which can reduce overall testing cost. To verify this method, for analysis, various analytical solutions were adopted and used. Measured and predicted effective stress are compared on the test results. The verification sites consist of a variety of soil condition. From comparison, it is seen that predicted value of effective stress using the propose method match well those from measured results.

  • PDF

규격별 비부착 긴장재의 극한응력식에 대한 비교 연구 (A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes)

  • 유성원;서정인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석 (Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes)

  • 윤정환;김종봉;양동열;정관수
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF