• Title/Summary/Keyword: Stress Error

Search Result 556, Processing Time 0.027 seconds

Limit speeds and stresses in power law functionally graded rotating disks

  • Madan, Royal;Saha, Kashinath;Bhowmick, Shubhankar
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • Limit elastic speed analysis of Al/SiC-based functionally graded annular disk of uniform thickness has been carried out for two cases, namely: metal-rich and ceramic rich. In the present study, the unknown field variable for radial displacement is solved using variational method wherein the solution was obtained by Galerkin's error minimization principle. One of the objectives was to identify the variation of induced stress in a functionally graded disk of uniform thickness at limit elastic speed using modified rule of mixture by comparing the induced von-Mises stress with the yield stress along the disk radius, thereby locating the yield initiation. Furthermore, limit elastic speed has been reported for a combination of varying grading index (n) and aspect ratios (a/b).Results indicate, limit elastic speed increases with an increase in grading indices. In case of an increase in aspect ratio, limit elastic speed increases up to a critical value beyond which it recedes. Also, the objective was to look at the variation of yield stress corresponding to volume fraction variation within the disk which later helps in material tailoring. The study reveals the qualitative variation of yield stress for FG disk with volume fraction, resulting in the possibility of material tailoring from the processing standpoint, in practice.

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri;Vikram Tati;Rathish Kumar P;Rajesh Kumar G
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.

A Study on the Improvement of Transmission Error and Tooth Load Distribution using Micro-geometry of Compound Planetary Gear Reducer for Tractor Final Driving Shaft (트랙터 최종구동축용 복합유성기어 방식 감속기의 Micro-geometry를 이용한 전달 오차 및 치면 하중 분포 개선에 관한 연구)

  • Lee, Nam Gyu;Kim, Yong Joo;Kim, Wan Soo;Kim, Yeon Soo;Kim, Taek Jin;Baek, Seung Min;Choi, Yong;Kim, Young Keun;Choi, Il Su
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • This study was to develop a simulation model of a compound planetary gear reducer for the final driving shaft using a gear analysis software (KISSsoft, Version 2017, KISSsoft AG, Switzerland). The aim of this study is to analyze transmission error and the tooth load distribution through micro-geometry using the simulation model. The tip and root relief were modified with Micro-geometry in the profile direction, and crowning was modified with Micro-geometry in the lead direction. The transmission error was analyzed using the PPTE (Peak to Peak Transmission Error) value, and the tooth load distribution was analyzed for the concentrated stress on the tooth surface. As a result of modifying tip and relief in the profile direction, the transmission error was reduced up to 40.7%. In the case of modifying crowning in the lead direction, the tooth load was more evenly distributed than before and decreased the stress on the tooth surface. After modifying the profile direction for the 1st and 2nd planetary gear train, the bending and contact safety factors were increased by 31.7% and 17%, and 18.3% and 12.5% respectively. Moreover, the bending and safety factors after modifying lead direction were increased by 59.5% and 32.7%, respectively for the 1st planetary gear train, and 59.6% and 43.6%, respectively for the 2nd planetary gear train. In future studies, the optimal design of a compound planetary gear reducer for the final driving shaft is needed considering both the transmission error and tooth load distribution.

SENSITIVITY ANALYSIS IN FUZZY RELIABILITY ANALYSISA

  • Onisawa, Takehisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.764-769
    • /
    • 1988
  • In this paper the failure possibility and the error possibility are used to represent reliability of a technical component and that of a human operator, respectively. The failure possibility and the error possibility are fuzzy sets on the interval [0,1]. In a man-machine system, reliability of the technical component and that of the human operator are usually affected by many factors, e.g., the environment in which a machine is operated, psychological stress of the human operator, etc. The possibility is derived from not only the failure or the error rate but also estimates of these factors. The fuzzy reasoning plays an important role in the derivation. The reliability analysis is performed by the use of the possibility obtained by the present method. Moreover this paper discusses the sensitivity analysis which evaluates what extent the change of the estimation of each factor has an influence on reliability of a man-machine system. The important factors to be ameliorated are shown through the sensitivity analysis.

  • PDF

On Large Eddy Simulation with Centered and Upwind Compact Difference Schemes (중심 및 상류 컴팩트 차분기법을 적용한 난류유동의 LES)

  • Park Noma;Yoo Jung Yul;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.807-810
    • /
    • 2002
  • The suitability of high-order accurate, central and upwind-biased compact difference schemes is evaluated for the large-eddy simulations of flows in complex geometry. Two flow geometries are considered: channel and circular cylinder. The effects of numerical dissipation and aliasing error on the evaluation of subgrid scale stress are investigated by extending the analysis by Ghosal (1) to centered and upwind compact schemes. It is shown that the failure of upwind schemes mainly comes from the aliasing error.

  • PDF

Gear Teeth Modification for a 2.5MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 치형수정)

  • Lee, Hyoung Woo;Kang, Dong-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2014
  • This paper reports a method to modify the gear tooth profile of a wind turbine gearbox to reduce the noise caused by the impact of the gear teeth. The major causes of tooth impact are the elastic deformation of the gear teeth, shafts, and case of the gearbox under loading, and the fabrication tolerances in gear manufacturing. In this study, the tooth profile was modified considering the elastic deformation of the gear tooth and the tooth lead modification to compensate for tooth interference in the lead direction as a result of shaft deformations. The method was applied to the gearbox of a 2.5MW wind turbine, and the transmission error was characterized before and after modifying the gear teeth. For the modified gear teeth, the transmission error (67.6%) was lower by 17.8%. Additionally, the gear contact stress was reduced by 6.3%, to 22.3%.

Error Analysis and Improvement of the Timoshenko Beam based Finite Element Model for Multi-Stepped Beam Structures (다단 보 구조에서의 티모센코 보 유한요소 모델링 오차분석 및 개선)

  • 홍성욱;이용덕;김만달
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.199-207
    • /
    • 2003
  • The Timoshenko beam model has been known as the most accurate model for representing beam structures. However, the Timoshenko beam model may give rise to a significant error when it is applied to multi-stepped beam structures. This paper is intended to demonstrate the modeling error of Timoshenko beam based finite element model for multi-stepped beam structures and to suggest a new modeling method to improve the accuracy. A tentative bending spring is introduced into the stepped section to represent the softening effect due to the presence of step. This paper also proposes a finite element modeling method in the light with the tentative bending spring model for the step softening effect. The proposed method rigorously adapts computation results from a commercial finite element code. The validity of the proposed method is demonstrated through a series of simulation and experiment.

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulation (I) - Numerical Test - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.973-983
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes is evaluated for large eddy simulation of turbulent flow. Two turbulent flows are considered: turbulent channel flow at Re = 23000 and flow over a circular cylinder at Re = 3900. The effects of numerical dissipation on the finite differencing and aliasing errors and the subgrid-scale stress are investigated. It is shown through the simulations that compact upwind schemes are not suitable for LES, whereas the fourth order-compact centered scheme is a good candidate for LES provided that proper dealiasing of nonlinear terms is performed. The classical issue on the aliasing error and the treatment of nonlinear terms is revisited with compact difference schemes.

A Posteriori Error Estimation Based On The Variation Of Mapping Function For Finite Element Method (사상 함수의 변분을 이용한 유한요소 해석의 오차 분석)

  • 박시형;김지환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.86-93
    • /
    • 2002
  • A new error estimation method is proposed. This utilizes the variation of energy functional about the mapping function between the global and the master elements. The resultant system of equations is the weak form of the generalized conservation checks. However, This formulation has an important information about the relations between the connected elements. In other words, some relations between the connected elements are obtained and these can be used very usefully to measure it posteriori error. In this paper, the explicit formulations are presented for the 1-dimensional model and the 2-dimensional model problems. Numerical results are provided for first order shear deformation theody of beam model and the plane stress problem.

  • PDF

Development of Risk Assessment by Ergonomics for Conscious Reform : Focused on the Semiconductor Industry (의식개혁을 위해 인간공학에 의한 위험성 평가 기법 개발 : 반도체 산업을 중심으로)

  • Kang, Young-Sig;Park, Peom;Yoon, Yong-Gu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.101-106
    • /
    • 2009
  • The unsafe act and unsafe condition is due to human error that experience 80% of safety accidents. Accordingly, one of the most important issues to reduce industrial accidents as a whole, is how to reduce the accident rate by the human error. Therefore, this paper describes the development of quantitative risk assessment (QRA) model by ergonomics for reform of safety consciousness on the semiconductor industry. Unconsciousness, disregard, ignorance, recklessness, and stress among the human factors are selected for conscious reform. Finally, the QRA model is efficiently expected to contribute towards improving continuous self-safety and health and safety culture campaign in order to prevent industrial accidents.