• Title/Summary/Keyword: Stress Concentration ratio

Search Result 289, Processing Time 0.035 seconds

The Characteristics of the Composite Ground with Sand Compaction Pile(SCP) using Large Soil Box (대형토조시험을 이용한 모래다짐말뚝이 적용된 복합지반의 침하 및 하중전이특성)

  • Kim, Oo-Seok;Park, Eon-Sang;Kim, Jae-Kwon;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.974-981
    • /
    • 2005
  • Because general laboratory tests for sand compaction pile method including unit-cell test device have fixed outside diameter, as area replacement ratio increase, diameter of sand pile increase. These condition can bring about overestimation of stiffness of composite ground. In addition, existing large soil box which consist of bellows type loading plate can occur serious mistake in checking the amount of drained water because there are additional drainage along the inside wall in device. Overcoming these shortcoming, this paper developed modified large scale soil box consist of piston type load plate. In this study, using this device, series of modified large scale soil box tests were performed, and investigated the settlement and stress transportation characteristics with area replacement ratio in sand compaction pile method.

  • PDF

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

A Study on Hydrogen Embrittlement Research on Automotive Steel Sheets (자동차 강재의 수소취성 연구에 대한 고찰)

  • Yang, Won Seog;Seo, Ji Won;Ahn, Seung Ho
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.193-201
    • /
    • 2018
  • In order to suppress $CO_2$ emission and protect passengers in case of vehicle collision, continuous efforts are being made to increase the application ratio and tensile strength of advanced high strength steels used in the manufacturing of automotive body. Simultaneously, hydrogen embrittlement which was not a concern in the past has currently become a major issue due to microstructure that is sensitive to hydrogen uptake. The sensitivity increases with residual stress and hydrogen uptake content. Many automotive OEM companies and mill makers are setting specifications to control hydrogen embrittlement. The factors which lead to hydrogen embrittlement are material sensitivity, residual stress, and hydrogen concentration; researches are in progress to develop countermeasures. To reduce material sensitivity, mill makers add high energy trap elements or microstructure refinement elements. Automotive OEM companies design the car parts not to concentrate local stress. And they manage the levels to not to exceed critical hydrogen concentration. In this article, we have reviewed hydrogen embrittlement evaluation methods and corresponding solutions that are being studied in automobile manufacturing industries and mill makers.

Rheology and morphology of concentrated immiscible polymer blends

  • Mewis, Jan;Jansseune, Thomas;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.4
    • /
    • pp.189-196
    • /
    • 2001
  • The phase morphology is an important factor in the rheology of immiscible polymer blends. Through its size and shape, the interface between the two phases determines how the components and the interface itself will contribute to the global stresses. Rheological measurements have been used successfully in the past to probe the morphological changes in model blends, particularly for dilute systems. For more concentrated blends only a limited amount of systematic rheological data is available. Here, viscosities and first normal stress differences are presented for a system with nearly Newtonian components, the whole concentration range is covered. The constituent polymers are PDMS and PIB, their viscosity ratio can be changed by varying the temperature. The data reported here have been obtained at 287 K where the viscosities of the two components are identical. By means of relaxation experiments the measured stresses are decomposed into component and interfacial contributions. The concentration dependence is quite different for the two types of contribution. Except for the component contributions to the shear stresses there is no clear indication of the phase inversion. Plotting either the interfacial shear or normal stresses as a function of composition produces in some cases two maxima. The relaxation times of these stresses display a similar concentration dependence. Although the components have the same viscosity, the stress-component curves are not symmetrical with respect to the 50/50 blend. A slight elasticity of one of the components seems to be the cause of this effect. The data for the more concentrated blends at higher shear rates are associated with a fibrillar morphology.

  • PDF

Further study on improvement on strain concentration in through-diaphragm connection

  • Qin, Ying;Zhang, Jingchen;Shi, Peng;Chen, Yifu;Xu, Yaohan;Shi, Zuozheng
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Hollow structural section (HSS) columns have been increasingly popular due to their structural and architectural merits. However, practical difficulty lies in developing proper connections. The through-diaphragm connections are considered as suitable connection type that is widely adopted in Asian countries. However, the stress concentration occurs at the location connecting through-diaphragm and steel beam. Furthermore, the actual load path from the beam flange is not uniformly transferred to the HSS column as conventionally assumed. In this paper, tensile tests were further conducted on three additional specimens with beam flange plate to evaluate the load versus displacement response. The load-displacement curves, yield and ultimate capacity, ductility ratio were obtained. Furthermore, the strain development at different loading levels was discussed comprehensively. It is shown that the studied connection configuration significantly reduces the stress concentration. Meanwhile, simplified trilinear load-displacement analytical model for specimen under tensile load was presented. Good agreement was found between the theoretical and experimental results.

Study on the Effect of Pile Tip Shape on Driven Pile Behavior Using 3D Printers (3D 프린터를 이용한 선단 모양 변화에 따른 타입말뚝 거동 연구)

  • Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this study, the impact of pile tip geometry, including shape, size, and angle, on the drivability and stress concentration during pile driving was investigated using 3D printing technology and finite element numerical analysis. A series of field loading tests were conducted on a test pile with various pile tip conditions, including width, angle, and shape. The changes in settlement were quantified as a ratio to the settlement of a conventional pile tip case and large deformation finite element analysis was used to investigate the maximum stress on a pile tip and the location of possible damage during pile driving. The results showed that by modifying the shape, size, and angle of the pile tip, the drivability of the pile could be improved and the maximum stress concentration around the pile tip could be significantly reduced, thereby ensuring the structural integrity of the pile during pile driving.

Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground (GCP 복합지반의 거동분석을 위한 유한요소해석)

  • Kim, Gyeong-eop;Park, Kyung-Ho;Kim, Ho-Yeon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.19-32
    • /
    • 2018
  • Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.

A Study on the Prediction of Fatigue Life by use of Probability Density Function (확률밀도함수를 이용한 피로균열 발생수명 예측에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • The estimation of fatigue life at the design stage is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the structure and machinery compo-nents. In this study the practical procedure of prediction of fatigue life by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function is shown with a $135,000m^3$ LNG tank being used as an example. In particular the parameters of Weibull distribution taht determine the stress spectrum are dis-cussed. At the end some of uncertainties associated with fatigue life prediction are discussed. The main results obtained from this study are as follows: 1. The practical procedure of prediction of fatigue life by use of cumulative damage factors expressed in combination of probability density function and S-N data is proposed. 2. The calculated fatigue life is influenced by the shape parameter and stress block. The conser-vative fatigue design can be achieved when using higher value of shape parameter and the stress blocks divded into more stress blocks.

  • PDF

Evaluation of the Residual Stress with Respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • Shim, Jae-Joon;Han, Geun-Jo;Han, Dong-Seup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.532-538
    • /
    • 2004
  • MEMS technology applying to the sensors and micro-electro devices is complete system. These microsystems are made by variable processes. Especially, the mentallization process has very important functions to transfer the power operating the sensor and signal induced from sensor part. But in the structures of MEMS the local stress concentration and deformation are often yielded by an irregular geometrical shape and different constraint. Therefore, this paper studies the effect of supporting type and thickness ratio about thin film of the substrate on the residual stress variation when the thermal loads is applied to the multi-layer thin film fabricated by metallization process. Specimens were made from several materials such as Al, Au and Cu. Then, uniform thermal load was applied, repeatedly. The residual stress was measured by FE Analysis and nano-indentation method using AFM. Generally, the specimen made of Al induced the larger residual stress than that of made of other materials. Specimen made of Cu and Au having the low thermal expansion coefficient induces the minimum residual stress. Similarly, the lowest indentation length was measured by nano-indentation method in the Si/Au/Cu specimen. Particularly, clusters are created in the specimen made of Cu by thermal load and the indentation length became increasingly large by cluster formation.