Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.4.193

A Study on Hydrogen Embrittlement Research on Automotive Steel Sheets  

Yang, Won Seog (Surface Coating Development Team, R&D Division of Hyundai Steel)
Seo, Ji Won (Accelerated Durability Development Team, Hyundai Motor R&D Center)
Ahn, Seung Ho (Accelerated Durability Development Team, Hyundai Motor R&D Center)
Publication Information
Corrosion Science and Technology / v.17, no.4, 2018 , pp. 193-201 More about this Journal
Abstract
In order to suppress $CO_2$ emission and protect passengers in case of vehicle collision, continuous efforts are being made to increase the application ratio and tensile strength of advanced high strength steels used in the manufacturing of automotive body. Simultaneously, hydrogen embrittlement which was not a concern in the past has currently become a major issue due to microstructure that is sensitive to hydrogen uptake. The sensitivity increases with residual stress and hydrogen uptake content. Many automotive OEM companies and mill makers are setting specifications to control hydrogen embrittlement. The factors which lead to hydrogen embrittlement are material sensitivity, residual stress, and hydrogen concentration; researches are in progress to develop countermeasures. To reduce material sensitivity, mill makers add high energy trap elements or microstructure refinement elements. Automotive OEM companies design the car parts not to concentrate local stress. And they manage the levels to not to exceed critical hydrogen concentration. In this article, we have reviewed hydrogen embrittlement evaluation methods and corresponding solutions that are being studied in automobile manufacturing industries and mill makers.
Keywords
Automotives; $CO_2$ emission; Advanced high strength steel; Hydrogen embrittlement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tz. Boiadjieva, L. Mirkova, H. Kronberger, and T. Steck, Electrochimica. Acta, 114, 790 (2013).   DOI
2 M. Kupka, K. Stepien, and K. Nowak, J. Phys. Chem Solids, 75, 344 (2014).   DOI
3 N. Xu, N. Ding, J. Shi, W. Guo, and Lawrence Wu, J. Fail. Anal. Prev., 15, 464 (2015).   DOI
4 ISO16573, Measuring Method for evaluation of hydrogen embrittlement resistance of high strength steel (2015).
5 ISO17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique (2014).
6 SEP 1970, Test of the Resistance of AHSS for Automotive Applications Against Production Related Hydrogen Induced Brittle Fracture (2011).
7 ACEA Report, Vehicle in Use, https://www.acea.be/statistics/article/vehicles-in-use-europe-2017 (2017).
8 NHTSA Technical Report, DOTHS 809952, https://www.nhtsa.gov/research-data (2016).
9 S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, and T. Tsuru, Corros. Sci., 98, 430 (2015).   DOI
10 E. Tada and Y. Miura, ISIJ Int., 56, 444 (2016).   DOI
11 T. Izumi and G. Itoh, Mater. Trans., 52, 130 (2011).   DOI
12 D. P. Escobar, Mater. Sci. Eng. A, 551, 50 (2012).   DOI
13 M. Ruthenberg, Proc. 11th Galvatech, The Iron and Steel Institute of Japan, Tokyo, Japan (2017).
14 H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016).   DOI
15 X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin, Int. J. Hydrogen Energy, 39, 13031 (2014).   DOI
16 N. Nanninga, J. Grochowshi, L. Heldt, and K. Rundman, Corros. Sci., 52, 1237 (2010).   DOI
17 C. Georges, ISIJ Int., 53, 1295 (2013).   DOI
18 A. Raina, V. S. Deshpande, and N. A. Fleck, Acta Mater., 144, 5777 (2018).
19 W. R. Opie and N. J. Grant, Trans. AIME, 188, 1237 (1950).
20 R. Kuziak, R. Kawalla, and S. Waengler, Arch. Civ. Mech. Eng., 8, 103 (2008).   DOI
21 H. Y. Ha, H. J. Kim, J. O. Moon, T. H. Lee, H. H. Jo, C. G. Lee, B. K. Yoo, and W. S. Yang, Corros. Sci. Tech. 16, 317 (2017).
22 K. Radwanski, A. Wrozyna, and R. Kuziak, Mat. Sci. Eng. A, 639, 567 (2015).   DOI
23 N. Fonstein, Advanced High Strength Steel, 1st ed., p. 5, Springer, Switzerland (2015).
24 AHSS Guidelines ver. 6.0, http://www.worldautosteel.org (2015).
25 J. Bold, Proc. Materials in Car Body Engineering, p. 24, Automotive Circle, Bad Nauheim, Germany (2017).
26 S. D. Cramer, and B. S. Covino, Jr., ASM Handbook Vol 13A, p. 367 - 374, ASM International (2003).
27 C. Gabrielli, G. Maurin, L. Mirkova, H. Perrot, and B. Tribollet, J. Electroanal. Chem., 590, 15 (2006).   DOI
28 A. Pundt and R. Kirchheim, Annu. Rev. Mater. Res., 36. 555 (2006).   DOI
29 S. I. Byun, Fundamental and Application of Corrosion on Metal, p. 417 - 436, Cheongmoongack, Korea (2006).
30 T. Zakroczymski, Z. Szklarska-Smialowska, J. Electrochem. Soc., 132, 2548 (1985).   DOI
31 A. Lasia, D. Gregoire, J. Electrochem. Soc., 142, 3393 (1995).   DOI
32 M. Nagumo, Fundamentals of Hydrogen Embrittlement, 1st ed., p. 3, Springer, Singapore (2017).
33 N. Amokrane, C. Gabrielli, E. Ostermann, and H. Perrot, Electrochimica. Acta, 53, 1962 (2007).   DOI