DOI QR코드

DOI QR Code

A Study on Hydrogen Embrittlement Research on Automotive Steel Sheets

자동차 강재의 수소취성 연구에 대한 고찰

  • Yang, Won Seog (Surface Coating Development Team, R&D Division of Hyundai Steel) ;
  • Seo, Ji Won (Accelerated Durability Development Team, Hyundai Motor R&D Center) ;
  • Ahn, Seung Ho (Accelerated Durability Development Team, Hyundai Motor R&D Center)
  • 양원석 (현대제철 연구개발본부 도금강판개발팀) ;
  • 서지원 (현대자동차 남양연구소 가속내구개발팀) ;
  • 안승호 (현대자동차 남양연구소 가속내구개발팀)
  • Received : 2018.08.16
  • Accepted : 2018.08.23
  • Published : 2018.08.30

Abstract

In order to suppress $CO_2$ emission and protect passengers in case of vehicle collision, continuous efforts are being made to increase the application ratio and tensile strength of advanced high strength steels used in the manufacturing of automotive body. Simultaneously, hydrogen embrittlement which was not a concern in the past has currently become a major issue due to microstructure that is sensitive to hydrogen uptake. The sensitivity increases with residual stress and hydrogen uptake content. Many automotive OEM companies and mill makers are setting specifications to control hydrogen embrittlement. The factors which lead to hydrogen embrittlement are material sensitivity, residual stress, and hydrogen concentration; researches are in progress to develop countermeasures. To reduce material sensitivity, mill makers add high energy trap elements or microstructure refinement elements. Automotive OEM companies design the car parts not to concentrate local stress. And they manage the levels to not to exceed critical hydrogen concentration. In this article, we have reviewed hydrogen embrittlement evaluation methods and corresponding solutions that are being studied in automobile manufacturing industries and mill makers.

Keywords

References

  1. R. Kuziak, R. Kawalla, and S. Waengler, Arch. Civ. Mech. Eng., 8, 103 (2008). https://doi.org/10.1016/S1644-9665(12)60197-6
  2. H. Y. Ha, H. J. Kim, J. O. Moon, T. H. Lee, H. H. Jo, C. G. Lee, B. K. Yoo, and W. S. Yang, Corros. Sci. Tech. 16, 317 (2017).
  3. K. Radwanski, A. Wrozyna, and R. Kuziak, Mat. Sci. Eng. A, 639, 567 (2015). https://doi.org/10.1016/j.msea.2015.05.071
  4. N. Fonstein, Advanced High Strength Steel, 1st ed., p. 5, Springer, Switzerland (2015).
  5. AHSS Guidelines ver. 6.0, http://www.worldautosteel.org (2015).
  6. J. Bold, Proc. Materials in Car Body Engineering, p. 24, Automotive Circle, Bad Nauheim, Germany (2017).
  7. S. D. Cramer, and B. S. Covino, Jr., ASM Handbook Vol 13A, p. 367 - 374, ASM International (2003).
  8. C. Gabrielli, G. Maurin, L. Mirkova, H. Perrot, and B. Tribollet, J. Electroanal. Chem., 590, 15 (2006). https://doi.org/10.1016/j.jelechem.2006.01.030
  9. A. Pundt and R. Kirchheim, Annu. Rev. Mater. Res., 36. 555 (2006). https://doi.org/10.1146/annurev.matsci.36.090804.094451
  10. S. I. Byun, Fundamental and Application of Corrosion on Metal, p. 417 - 436, Cheongmoongack, Korea (2006).
  11. T. Zakroczymski, Z. Szklarska-Smialowska, J. Electrochem. Soc., 132, 2548 (1985). https://doi.org/10.1149/1.2113621
  12. A. Lasia, D. Gregoire, J. Electrochem. Soc., 142, 3393 (1995). https://doi.org/10.1149/1.2050267
  13. M. Nagumo, Fundamentals of Hydrogen Embrittlement, 1st ed., p. 3, Springer, Singapore (2017).
  14. N. Amokrane, C. Gabrielli, E. Ostermann, and H. Perrot, Electrochimica. Acta, 53, 1962 (2007). https://doi.org/10.1016/j.electacta.2007.08.053
  15. Tz. Boiadjieva, L. Mirkova, H. Kronberger, and T. Steck, Electrochimica. Acta, 114, 790 (2013). https://doi.org/10.1016/j.electacta.2013.06.010
  16. M. Kupka, K. Stepien, and K. Nowak, J. Phys. Chem Solids, 75, 344 (2014). https://doi.org/10.1016/j.jpcs.2013.10.009
  17. N. Xu, N. Ding, J. Shi, W. Guo, and Lawrence Wu, J. Fail. Anal. Prev., 15, 464 (2015). https://doi.org/10.1007/s11668-015-9972-1
  18. ISO16573, Measuring Method for evaluation of hydrogen embrittlement resistance of high strength steel (2015).
  19. ISO17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique (2014).
  20. SEP 1970, Test of the Resistance of AHSS for Automotive Applications Against Production Related Hydrogen Induced Brittle Fracture (2011).
  21. ACEA Report, Vehicle in Use, https://www.acea.be/statistics/article/vehicles-in-use-europe-2017 (2017).
  22. NHTSA Technical Report, DOTHS 809952, https://www.nhtsa.gov/research-data (2016).
  23. S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, and T. Tsuru, Corros. Sci., 98, 430 (2015). https://doi.org/10.1016/j.corsci.2015.05.049
  24. E. Tada and Y. Miura, ISIJ Int., 56, 444 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-405
  25. T. Izumi and G. Itoh, Mater. Trans., 52, 130 (2011). https://doi.org/10.2320/matertrans.L-M2010825
  26. D. P. Escobar, Mater. Sci. Eng. A, 551, 50 (2012). https://doi.org/10.1016/j.msea.2012.04.078
  27. A. Raina, V. S. Deshpande, and N. A. Fleck, Acta Mater., 144, 5777 (2018).
  28. W. R. Opie and N. J. Grant, Trans. AIME, 188, 1237 (1950).
  29. M. Ruthenberg, Proc. 11th Galvatech, The Iron and Steel Institute of Japan, Tokyo, Japan (2017).
  30. H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-430
  31. X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin, Int. J. Hydrogen Energy, 39, 13031 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.079
  32. N. Nanninga, J. Grochowshi, L. Heldt, and K. Rundman, Corros. Sci., 52, 1237 (2010). https://doi.org/10.1016/j.corsci.2009.12.020
  33. C. Georges, ISIJ Int., 53, 1295 (2013). https://doi.org/10.2355/isijinternational.53.1295

Cited by

  1. 2단 감압 수소레귤레이터의 연성해석 및 도금특성에 관한 연구 vol.22, pp.1, 2018, https://doi.org/10.5762/kais.2021.22.1.37