• Title/Summary/Keyword: Stress Biomarker

Search Result 100, Processing Time 0.034 seconds

The Molecular Biomarker Genes Expressions of Rearing Species Chironomus riparious and Field Species Chironomus plumosus Exposure to Heavy Metals (실내종 Chironomus riparious와 야외종 Chironomus plumosus의 중금속 노출에 따른 분자지표 유전자 발현)

  • Kim, Won-Seok;Kim, Rosa;Park, Kiyun;Chamilani, Nikapitiya;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.86-94
    • /
    • 2015
  • Chironomous is aquatic insect belonging to order Diptera, family Chironomidae. Their larval stage can be found mainly in aquatic benthic environment, hence good model organism to study environmental toxicology assessments and consider as useful bio indicators of contamination of the aquatic environment. In this study, Chironomus Heat Shock Proteins, Cytochrome 450, Glutathione S-transferase, Serine-type endopeptidase gene expressions were compared between polluted field areas (Chironomus plumosus) and under laboratory conditions (Chironomus riparious) to investigate molecular indicators for environmental contaminant stress assessment. Heavy metal (Al, Fe, Mn, Cu, Cr, Zn, Se, Pb, As, Cd) concentrations in sediments collected from three study areas exceeded the reference values. Moreover, HSPs, CYP450 and GST gene expression except SP for C. plumosus showed higher expression than C. riparious gene expression. Similar gene expression pattern was observed in C. riparious that exposed environment waters up to 96 h when compared to C. plumosus exposed to waters that grown in lab conditions. In summary, this comparative gene expression analysis in Chironomous between field and laboratory condition gave useful information to select candidate molecular indicators in heavy metal contaminations in the environment.

The Expression of Hsp90 and Ferritin Genes under Thermal Stress in the Sea Cucumber (Apostichopus japonicas) (Apostichopus japonicas (Echinodermata; Holothuroidea)에서 온도 스트레스에 의한 Hsp90 및 Ferritin 유전자의 발현)

  • Kim, Chul Won;Jin, Young Guk;Kim, Tae Ik;Jeong, Dal Sang;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.433-440
    • /
    • 2015
  • The Apostichopus japonicus is an important species in some Asia countries including Korea, China and Japan. The purpose of the present study was to investigate the differential gene expression of heat shock protein90 (Hsp90) and ferritin as a biomarker for the thermal stress during water temperature rising in the sea cucumber, A. japonicus. The A. japonicus (1.4 g) was cultured in incubator of separate temperature ($15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$) for each 0, 3, 6, 12, 24, 48 hours. The mRNA expression levels of Hsp90 and ferritin were examined using RT-PCR assay. Results showed that, the expression of Hsp90 mRNA was not significantly changed at $15^{\circ}C$. The expression of Hsp90 mRNA was significantly increased at high temperature such as $20^{\circ}C$ and $25^{\circ}C$. Furthermore, Hsp90 mRNA was early increased at $25^{\circ}C$ than $20^{\circ}C$. The ferritin mRNA was similar expression pattern with Hsp90. But, Hsp90 mRNA was more sensitive than ferritin mRNA at high thermal stress. These results indicate that Hsp90 and ferritin mRNAs were involved in the temperature changes response and may be play an important role in mediating the thermal stress in A. japonicas.

Metabolomics, a New Promising Technology for Toxicological Research

  • Kim, Kyu-Bong;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2009
  • Metabolomics which deals with the biological metabolite profile produced in the body and its relation to disease state is a relatively recent research area for drug discovery and biological sciences including toxicology and pharmacology. Metabolomics, based on analytical method and multivariate analysis, has been considered a promising technology because of its advantage over other toxicogenomic and toxicoproteomic approaches. The application of metabolomics includes the development of biomarkers associated with the pathogenesis of various diseases, alternative toxicity tests, high-throughput screening (HTS), and risk assessment, allowing the simultaneous acquisition of multiple biochemical parameters in biological samples. The metabolic profile of urine, in particular, often shows changes in response to exposure to xenobiotics or disease-induced stress, because of the biological system's attempt to maintain homeostasis. In this review, we focus on the most recent advances and applications of metabolomics in toxicological research.

Significance of $p27^{kip1}$ as potential biomarker for intracellular oxidative status

  • Quintos, Lesley;Lee, In-Ae;Kim, Hyo-Jung;Lim, Ji-Sun;Park, Ji-A;Sung, Mi-Kyung;Seo, Young-Rok;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.351-355
    • /
    • 2010
  • Our previous proteomic study demonstrated that oxidative stress and antioxidant delphinidin regulated the cellular level of $p27^{kip1}$ (referred to as p27) as well as some heat shock proteins in human colon cancer HT 29 cells. Current study was conducted to validate and confirm the regulation of these proteins using both in vitro and in vivo systems. The level of p27 was decreased by hydrogen peroxide in a dose-dependent manner in human colon carcinoma HCT 116 (p53-positive) cells while it was increased upon exposure to hydrogen peroxide in HT 29 (p53-negative) cells. However, high concentration of hydrogen peroxide (100 ${\mu}M)$ downregulated p27 in both cell lines, but delphindin, one of antioxidative anthocyanins, enhanced the level of p27 suppressed by 100 ${\mu}M$ hydrogen peroxide. ICR mice were injected with varying concentrations of hydrogen peroxide, delphinidin and both. Western blot analysis for the mouse large intestinal tissue showed that the expression of p27 was upregulated by 25 mg/kg BW hydrogen peroxide. To investigate the association of p27 regulation with hypoxia-inducible factor 1-beta (HIF-$1{\beta}$), the level of p27 was analyzed in wild-type mouse hepatoma hepa1c1c7 and Aryl Hydrocarbon Nuclear Translocator (arnt, HIF-$1{\beta}$)-defective mutant BPRc1 cells in the absence and presence of hydrogen peroxide and delphinidin. While the level of p27 was responsive to hydrogen peroxide and delphinidin, it remained unchanged in BPRc1, suggesting that the regulation of p27 requires functional HIF-$1{\beta}$. We also found that hydrogen peroxide and delphinidin affected PI3K/Akt/mTOR signaling pathway which is one of upstream regulators of HIFs. In conclusion, hydrogen peroxide and antioxidant delphinidin seem to regulate intracellular level of p27 through regulating HIF-1 level which is, in turn, governed by its upstream regulators comprising of PI3K/Akt/mTOR signaling pathway. The results should also encourage further study for the potential of p27 as a biomarker for intracellular oxidative or antioxidant status.

Comparison of Hsp90 and CYP1A Expression Patterns by Water Temperature Stress in Atlantic Salmon (Salmo salar) (대서양 연어(Salmo salar)의 수온 스트레스에 의한 Hsp90 및 CYP1A 발현 양상 비교)

  • Kang, Han Seung;Song, Jae-Hee;Kang, Hee Woong
    • Journal of Marine Life Science
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Variations in water temperature are known to affect almost every part of fish physiology. The rise in water temperature due to climate change can physically damage fish. This study was conducted to evaluate the health status of the Atlantic salmon (Salmo salar) at high water temperature (20℃) than the optimum water temperature (15℃). Liver tissue exerts important metabolic functions in thermal adaptation. Therefore, liver tissue was used in this study. The evaluation method is to develop the biomarker gene using NGS RNAseq analysis and to examine the expression pattern using RT-qPCR analysis. The NGS RNAseq analysis revealed 1,366 differentially expressed genes, among which 880 genes were increase expressed and 486 genes were decrease expressed. The biomarker genes are such as heat shock protein 90 alpha (Hsp90α), heat shock protein 90 beta (Hsp90β) and cytochrome P450 1A (CYP1A). The selected genes are sensitive to changes in water temperature through NGS RNAseq analysis. Expression patterns of these genes through RT-qPCR were similar to those of NGS RNAseq analysis. The results of this study can be applied to other fish species and it is considered to be useful industrially.

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

The Effects of Korea Ginger Essential oil on Chronic Mild Stress-induced Rats Model of Sympathetic Hyperactivity (국내 생강 에센셜오일이 만성 스트레스로 교감신경이 항진된 동물 모델에 미치는 영향)

  • Ji, Joong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1188-1197
    • /
    • 2019
  • Exposure to stress can lead to sympathetic hyperactivity, which include a systemic disease with lesions in a broad spectrum of organs and a psychiatric condition. The purpose aimed to evaluate the effect of the korea ginger essential oil on stress hormone and brain tissue response in chronic mild stress-induced rats model of sympathetic hyperactivity. Evaluation method carried out cytotoxicity assessment and component analysis, what observe the effects based on serum biomarker and histopathological analysis of brain tissue. As this time, the korea ginger essential oil was treatment at doses of 100 nl/㎖ for 2 weeks after make a chronic mild stress-induced rats model of sympathetic hyperactivity. As a result, the korea ginger essential oil was not toxic at less than 100 nl/㎖, contents of 6-gingerol was 345 ppm. Compared to the control rats, the korea ginger essential oil treatments significantly reduced the serum concentrations of stress hormone (i.e., ACTH, corticosterone, melatonin). Furthermore, The korea ginger essential oil treatments effectively preserved the TH-immune response was occasionally interrupted in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc). The results indicate that the korea ginger essential oil improved sympathetic hyperactivity. Thus, the korea ginger may be a novel material of aroma oils for the management of sympathetic hyperactivity.

Plasma Adropin as a Potential Marker Predicting Obesity and Obesity-associated Cancer in Korean Patients With Type 2 Diabetes Mellitus

  • Choi, Ha-Neul;Yim, Jung-Eun
    • Journal of Cancer Prevention
    • /
    • v.23 no.4
    • /
    • pp.191-196
    • /
    • 2018
  • Background: Type 2 diabetes mellitus (T2DM) and cancer are serious health problems worldwide, and their prevalences have been on the rise in recent years. It has been reported that adropin plays an important role in the development of T2DM, oxidative stress, inflammation, and obesity. However, there is limited information available on T2DM from human studies, especially for the Korean population. In this study, we aimed to investigate the correlation between adropin levels and obesity of Korean T2DM patients. Methods: Thirty-six T2DM patients were recruited for this study. The participants were further classified into female (n = 12) and male (n = 24). Their body composition, metabolic parameters, inflammatory factors, and oxidative stress were measured. Results: The severity of obesity is more manifested in male than in female. Plasma triglyceride (TG) and high-sensitivity C-reactive protein (hs-CRP) levels of male were significantly higher than female. The plasma adropin and adiponectin level of female was significantly higher than male. The body weight, body mass index (BMI), body fat mass were negatively correlated with the plasma adropin level in female, whereas adropin has positive correlation with adiponectin in female. The hs-CRP was negatively correlated with the plasma adropin level in female and male. malondialdehyde, reactive oxidative species, and $TNF-{\alpha}$ was not significantly correlated with adropin in patients with T2DM. Conclusions: These findings suggest that adropin may be more used as a biomarker for predicting the risk of obesity and inflammation in Korean patients with T2DM, especially women.

Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species

  • Wooram Choi;Jeong Hun Cho;Sang Hee Park;Dong Seon Kim;Hwa Pyoung Lee;Donghyun Kim;Hyun Soo Kim;Ji Hye Kim;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.211-219
    • /
    • 2024
  • Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.

Determination of Appropriate Sampling Time for Job Stress Assessment: the Salivary Chromogranin A and Cortisol in Adult Females

  • Hong, Ran-Hi;Yang, Yun-Jung;Kim, Sang-Yon;Lee, Won-Young;Hong, Yeon-Pyo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.4
    • /
    • pp.231-236
    • /
    • 2009
  • Objectives : This study was conducted to determine the appropriate sampling time of the salivary stress markers, chromogranin A (CgA) and cortisol as objective indices of job stress assessment in adult females. Methods : The subjects were 20${\sim}$39-year-old women (13 office workers, 11 sales-service workers, and 11 college students) who were eligible for the study and free of acute and chronic medical conditions. Salivary CgA and cortisol levels were determined by enzyme-linked immunosorbent assay (ELISA). Saliva samples were collected (2 $m{\ell}$ each) at 7:00, 8:00, 10:30, 12:00, 17:30, and 22:30 on a typical day. Salivary CgA and cortisol levels, according to sampling time, were compared among the three groups using general linear model. The full version of the Korean Occupational Stress Scale (KOSS), which includes socioeconomic characteristics, health behavior, workrelated characteristics, and BMI, was used to access the subjects' job stress. Multiple regression analysis of the job stressors identified by the KOSS was performed on salivary CgA and cortisol levels. Results : The salivary CgA level peaked at 7:00 (time of awakening), then decreased and were maintained at a low level throughout the day, and increased slightly at 17:30. The salivary cortisol level increased steeply within the 1st hour after awakening, followed by a gradual decrease by 12:00, and was then maintained at a low level throughout the day. The salivary cortisol levels of subjects who worked ${\leq}$5 days per week and graduated from the university were significantly lower at 8:00 (p=0.006). The salivary cortisol levels of non-smokers were significantly lower at 7:00 p=0.040) and 8:00 (p=0.003) compared to smokers. There were no significant differences in salivary CgA and cortisol levels at 10:30 and 12:00 in general characteristics. The regression coefficients on salivary CgA level were significant with interpersonal conflict at 17:30 and job insecurity at 22:30. Regression coefficients on salivary cortisol level were significant with organizational system and total job stressors at 17:30. Conclusions : We suggest that the appropriate sampling times for the salivary stress markers, CgA and cortisol, are at 7:00 (time of awakening), 8:00 (1 hour after awakening), 17:30 (early evening), and 22:30 (before sleep).