• Title/Summary/Keyword: Stress/Strain Effect

Search Result 1,402, Processing Time 0.024 seconds

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

Strength Characteristics of Square Concrete Column Confined by Carbon Composite Tube (탄소섬유튜브로 횡구속된 각형 콘크리트 기둥의 압축강도 성능에 관한 연구)

  • 홍원기;김희철;윤석한;박순섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The carbon composite tube can play an important role in replacing or complementing longitudinal and transverse reinforcing steels by providing ductility and strength for conventional columns. In this study, both the experimental and analytical investigations of axial behavior of large-scale square concrete columns confined by carbon composite tube are presented. The specimens are filament-wound carbon composite with 90$^{\circ}$+30$^{\circ}$, 90$^{\circ}$+45$^{\circ}$ winding angle respect to longitudinal axis of tube. The instrumented large-scale concrete-filled composite tubes(CFCT) are subjected to monotonic axial loads exerted by 10,000kN UTM. The influence of winding angle, thickness of tube on stress-strain relationships of the confined columns is identified and discussed. Proposed equations to predict both the strength and ductility of confined columns by carbon composite tube demonstrate good correlation with test data obtained from large-scale specimens.

Bending and Vibration Analysis of Elastic and Viscoelastic Laminated Composite Structures using an Improved Higher-order Theory (개선된 고차이론을 이용한 복합재료 적층구조물의 탄성 및 점탄성적 휨, 진동해석)

  • Han, Sung Cheon;Yoo, Yong Min;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • To obtain more accurate responses of laminated composite structures, the effect of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane displacements with respect to the thickness coordinate need to be considered in the analysis. The improved higher-order theory is used to determine the deflections and natural frequencies of laminated composite structures. A quasi-elastic method is used for the solution of viscoelastic analysis of the laminated composite plates and sandwiches. Solutions of simply-supported laminated composite plates and sandwiches are obtained and the results are compared with those by the 3D elasticity theory and other theories. The improved theory proposed in this paper is shown to predict the deflections and natural frequencies more accurately than all other theories.

Lactobacillus plantarum ZLP001: In vitro Assessment of Antioxidant Capacity and Effect on Growth Performance and Antioxidant Status in Weaning Piglets

  • Wang, J.;Ji, H.F.;Wang, S.X.;Zhang, D.Y.;Liu, H.;Shan, D.C.;Wang, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1153-1158
    • /
    • 2012
  • The objective of this study was to evaluate the antioxidant capacity of Lactobacillus plantarum ZLP001 and its effects on growth performance and antioxidant status in weaning piglets. The survival in hydrogen peroxide and free radical-scavenging activity of Lactobacillus plantarum ZLP001 were analysed in vitro. The Lactobacillus plantarum ZLP001 showed high viability in 1.0 mmol/L hydrogen peroxide and high scavenging ability against hydroxyl, superoxide anion, and DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals which was dose dependent. Ninety-six weaning piglets were selected ($7.45{\pm}0.79kg$) and divided into three groups comprising of negative control without any supplementation, treatment group with supplemented $6.8{\times}10^7$ Lactobacillus plantarum ZLP001 CFU/g of diet, and positive control with antibiotic treatment (chlorotetracycline, 80 mg/kg diet). The results showed that Lactobacillus plantarum ZLP001 supplementation enhanced feed conversion rates in piglets compared with control (p<0.05). Supplementation of Lactobacillus plantarum ZLP001 increased the concentration of superoxide dismutase (p<0.05), glutathione peroxidase (p<0.01) and catalase in serum (p<0.10), while decreased the concentration of malondialdehyde (p<0.05). The present study implies that the strain Lactobacillus plantarum ZLP001 had high antioxidant ability and its supplementation improved the growth performance and antioxidant status of weaning piglets, so it can be considered useful to alleviate oxidative stress and increase productive performance of pigs.

A Study on the Effects of Chemical Grout on the Shear Strength of Fresh Granite Joints (신선한 화강암 절리면에서 약액에 의한 전단강도의 변화에 대한 연구)

  • Chung, Hyung Sik;Lee, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.99-106
    • /
    • 1990
  • This study was aimed to see the effect of chemical grout on fresh granite joint shear strength. The grouting chemical used in this study was composed of 25% water glass. Direct shear tests were performed on the chemical filled joints, which had been made artificially with granite. The test results show that chemical grouted rock jonts have markedly reduced shear strength comparing with the ungrouted fresh joints and they sheared within chemical grout before the rock to rock contact had been established, while the ungrouted joint sheared between rock surfaces from the beginning of shear deformation. With chemical grouted joints the shear stress slowly reached its maximum without showing distinct peak shear strength. Therefore the shear stiffness of joints were decreased with increasing thickness of grout. but the shear strain at failure was increased with it.

  • PDF

A study on the welding conditions that affect thermal deformation and mechanical property of Al 5083 non-ferrous alloy for eco-environmental leisure ships

  • Moon, Byung Young;Kim, Kyu Sun;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1190-1199
    • /
    • 2014
  • As a considerable, experimental approach, an autocarriage type of $CO_2$ welding machine and a MIG(metal inert gas) welding robot in the inert gas atmosphere were utilized in order to realize Al 5083 welding to hull and relevant components of green leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc.) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, nonferrous material, applied to manufacturing of eco-environmental leisure ships. With respect to welding condition to minimize the thermal deformation, 150 A and 16 V at the wire-feed rate of 6 mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(heat affected zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5 mm thickness, 284.62 MPa of tensile strength and 11.41 % of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification (WPS).

Development of a Nonlinear Concrete Model for Internally Confined Hollow Members Considering Confining Effects (구속효과를 고려한 내부 구속 중공 CFT 부재의 비선형 콘크리트 모델 개발)

  • Han, Taek Hee;Youm, Eung Jun;Han, Sang Yun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • There is a growing range of applications for concrete-filled steel tube (CFT) member because of its superior performance. But a CFT member may be uneconomical or has weight problems because it is fully filled with concrete. In this study, a new type of member, called internally confined hollow (ICH) CFT member, was developed to solve the high cost and weight problems of the CFT member. To determine stress-strain model of the concrete in an ICH CFT column, possible failure modes of an ICH CFT column were suggested and confining pressure was derived from equilibriums for each failure mode. From the derived equations, a computer program was coded and parametric studies were performed for some examples. Analytical results showed that internally confined concrete has enhanced strength and ductility compared with those of unconfined or biaxially confined concrete.

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

Effects of Load Carrying Capacity with Method of Application of Prestress on Long-Span Temporary Bridges (장지간 가설교량에서 프리스트레스의 도입방법과 텐던배치에 따른 내하력의 영향)

  • Sim, Jai-Hyun;Park, Jeong-Ung;Park, Kil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1275-1280
    • /
    • 2009
  • In recent bridge design, studies on application of external prestress have actively been conducted. When prestress is applied to steel structures, the limit value of elastic strain with large load increases with reduction of steels, this method is economic in cost. According to study by Brodka (1969), steel plate bridges with prestress has an effect on cost saving of about 15% compared with structures without prestress. For that reason, our country recently adopted this method in construction of temporary bridges and various engineering technologies have been developed which made stress correction, droop correction and long-span construction possible with relatively small cross sections. This study verifies the method of application of prestress in temporary steel structures, the influence of high-strength tendon arrangement and the effects of composite structures of steel plates and high-strength tendons based on existing method.

The Evaluation of Custom Foot Orthotics for Injury Prevention of Joggers (달리기 동호인들의 상해예방을 위한 맞춤형 발 보장구의 평가연구)

  • Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2006
  • The purpose of this study was to examine the effect of foot orthotics on the overall comfort and muscle activity during running. The subjects were 10 members from the joggers' club which consisted of 2 women and 8 men. These individuals ran on the treadmill by 4.0m/s speed with and without the custom foot orthotics. The data concerning the overall comfort was collected by a questionairre that examined the overall comfort, heel cushioning, forefoot cushioning, medio-lateral control, arch height, heel cup fit, shoe heel width, forefoot width, and shoe length The MegaWin ver. 2.1(Mega Electronics lid, Ma. Finland) was used to gain electromyography signals of the muscle activity; Tibialis anterior, medial gastronemius, lateral gastronemius, vastus lateralis, vastus medialis, biceps femoris, and rectus femoris were measured. The results of the study were as follows. 1. During running the overall comfort was higher for the foot arthotic condition than the nonorthotic condition. Among the inquiries the overall comfort showed the biggest difference comparing the two conditions. and the shoe heel width showed the highest score for contort. 2 The muscle activity of the biceps femoris, and vastus lateralis in the stance period decreased. due to the foot orthotics. The muscle activity of the vastus medialis in the swing period also decreased and the muscle activity tibialis anterior in the stance and swing stance decreased as well During running, orthotics showed positive result in foot comfort. The foot comfort related to decreased stress, muscle activity, and foot arch strain. Overall comfort and the adequate decrease of muscle activity were associated with injury prevention and the best method to prevent injury semms to be the maintenance of foot comfort.