• Title/Summary/Keyword: Strength Evaluation Method

Search Result 1,530, Processing Time 0.025 seconds

Evaluation of Bond Strength of a Fire-Damaged Reinforced Concrete Structure (화재로 인해 손상 받은 철근콘크리트 구조물의 콘크리트 부착강도 평가)

  • 심종성;문도영;이정환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.211-213
    • /
    • 2003
  • Evaluation of bond strength of a fire-damaged reinforced concrete structure for determining whether to reuse, reinforced, or abandon the structure is very important. Recently, calculating method for changes in bond strength of rebars is proposed by C. Chiang. The equation is relating the ratio of residual bond strength, R, to temperature, T, and exposure time, t. This study presented and verified a general process for evaluating damage to bond strength of RC structure arising from high temperature.

  • PDF

Fatigue Life Prediction and Strength Evaluation of Shot Peened Parts (쇼트피이닝한 부재의 피로수명 예측 및 피로강도 평가)

  • Kim, Hwan-Du;Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.75-87
    • /
    • 1985
  • A review was performed on fatigue life prediction and strength evaluation of shot peened parts. Fatigue strength of machine parts can be improved by shot peening due to compressive residual stresses on such parts. Compressive residual stress cannot be uniquely define by peening intensity. Several measuring methods of residual stress and the principle of hole drilling method are presented. Exploratory measurement of residual stress was performed on the shot peened SM35C plate with the hole drilling method. Fatigue life and failure location of shot peened parts under bending load can be predicted by a damage parameter which is incorporated with material properties, residual stress, and applied stress conditions. Some method are presented to predict the fatigue strength of shot peened parts at any given life. Shot peening gives its full benefit to the notched machine parts of high strength steels.

  • PDF

Suggestion for Concrete Strength Grade Using Ultrasonic Velocity for Tunnel Lining Concrete (터널 라이닝 콘크리트의 초음파 속도를 이용한 강도 등급 제안)

  • Kang, Su-Tae;Lee, Bang-Yeon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.320-327
    • /
    • 2015
  • This study implicates a quality evaluation technique for lining concrete using the ultra-sonic technique and proposed a classification for quality evaluation. From the comparison of test results, an improved result comparable to the results by destructive test can be obtained by using averaged transmission velocity of velocities obtained at pure space and central space between two sensors of ultrasonic tester. It is also shown that strength evaluation by ultra-sonic method is not reliable and an evaluation according to the transmission velocities can be improved method for the strength evaluation of concrete.

Analysis on Application of Limit State Design Method for Bridge Evaluation Considering PSC Beam Bridge Experiment Results (PSC Beam교의 실측실험을 반영한 한계상태설계법 기반 교량 평가법 적용 분석)

  • Kim, Kyunghyun;Yoo, Minsun;Paik, Inyeol;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.235-244
    • /
    • 2021
  • This study analyzes the applicability of limit state design method on bridge evaluation by considering the experiment of the existing bridge. The test strength of the member is obtained from the PSC beam bridge experiment. The test strength is compared with the calculated strength obtained from the statistical characteristics of material test strength and the two values are almost the same. The response modification factor and dynamic impact factor are obtained from the vehicle loading test. The rating factor is calculated by applying limit state design method as well as current evaluation method and the results are compared. The reliability index of the test bridge is calculated by using the statistical properties of the member strength obtained from material test and simulation. When the statistical properties of the PSC beam tested in this study are applied, the reliability index with a larger value was obtained than the reliability index obtained with the statistical properties of the design code.

The Study on Earlier Evaluation of Strength for Cement Using resistance Method (전기 저항법을 이용한 시멘트 강도의 조기 판정에 관한 연구)

  • 김화중;박정민;김태곤;최신호;이승조
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.124-129
    • /
    • 1995
  • In this study proposed to rapid and simple methid of test for early evaluation of strength of cement. The obtained results through a series of experiment are summarized as follow. The resistance ratio was decreased as the increase of water-cement ratio. The compressive strength of cement was increased as the resistance ratio increase. The experimental results of compressive strength of cement is shown in the same value no relation with the kind of cement respectively.

  • PDF

An Analytical Study on Fatigue Strength Evaluation Procedure for the Bogie Frame of Tilting Railway Vehicle (틸팅대차 프레임에 대한 피로강도평가 절차에 관한 해석적 연구)

  • Kim Nam-Po;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.321-329
    • /
    • 2005
  • This paper has established the strength evaluation procedure of the bogie frame for the Korean tilting train that is being developed in KRRI, In order to establish the strength evaluation procedure, firstly, the loading conditions imposed on the tilting train were investigated. In addition, the static and fatigue strength of the bogie frame has been evaluated. In order to derive the dynamic loads according to the carbody tilting, the load redistribution effect by carbody tilting, the unbalanced lateral acceleration effect by high-speed curving and the tilting actuator force effect have been considered. Multi-body dynamic analyses have been carried out to evaluate the tilting load cases and the strength analysis has been performed by finite element analyses. From this study, the structural safety of the bogie frame could be ensured.

The Study for Development on Earlier Evaluation Instrument of Strength of Concrete -An Experimental Study on Compressive Strength of Mortar Using Resistance Method- (콘크리트 강도 조기 판정기의 개발에 관한 연구 (2) 전기 저항법을 이용한 모르타르의 압축강도에 관한 실험적 연구)

  • 이도헌;윤상천;김화중;박정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.441-446
    • /
    • 1994
  • In this study proposed to rapid and simple test method for early decision of quality of concrete. As the this paper is experimental study for compressive strength of mortar using resistance method, the obtained results are summarized as follow ; $\circled1$ The resistance ratio was decreased as the incement of water-cement ratio $\circled2$ The compressive strength presented to the tendency of increment as resistance ratio is increaing

  • PDF

The Study on Earlier Evaluation of Concrete Strength Using Electric Resistance Method (전기 저항법을 이용한 콘크리트 조기 강도 판정에 관한 연구)

  • 김화중;이도현;윤상천;박정민;최신호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.130-135
    • /
    • 1995
  • We can consider that the study on early evaluation of strength of concrete is useful to raise safety of building and utility of quality control of concrete is useful to raise safety of building and utility of quality control of concrete. In this paper, was proposed to method early to predict strength of concrete with key parameters, such as Water/Cement(W/C) ratio and Sand / Aggregate(S/A) ratio. Through a series of experiment, the obtained results are summarized as follow. $\circled1$ The ratio of resistance was decteased as the increase of W/C ratio. $\circled2$ The maximum value for the ratio of resistance and compressive strength was presented in the case of 40% S/A ratio. $\circled3$ The relationship. of the ratio of resistance and compressive strength on 28days according to the change of W/C and S/A ratio is to be: $F_{28}=-0.00104R^2 + 2.263R - 935.5$ (W/C Ratio) $F_{28} = 0.007R^2 - 10.693R - 4269.1$ (S/A Ratio)

  • PDF

Development of A Strength Test Method for Irregular Shaped Concrete Block Paver (이형 콘크리트 블록의 강도 평가방법에 관한 연구)

  • Lin, Wuguang;Park, Dae-Geun;Ryu, SungWoo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

A Study on the Economic Evaluation Model of Splice of Reinforcement Bar(SD500) (초고강도 철근이음의 경제성 평가모델 개발에 관한 연구)

  • Kim, Jae-Yeob;Kim, Dae-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Recently, the high-rise apartment housings have become a prototype of the urban residential dwelling in Korea and the numbers of one have steadily been increasing. According to this trend, the strength of the construction materials is also fortified to assure the stability and durability of the buildings. Specially, Re-bar of SD500 type is largely used at the construction sites of high-rise building. This study analyzes the current usage of SD500 high-strength re-bar at domestic construction sites. Through the result of this analysis, we develop Economic Evaluation Model that measure economic efficiency of lap splice and coupler splice, which are most commonly used in connection SD500. The evaluation method was applied to construction sites in Seoul in December 2006, and the result revealed that coupler splice is relatively superior in terms of cost efficiency when the re-bar diameter is longer and the concrete strength is lower.