DOI QR코드

DOI QR Code

Analysis on Application of Limit State Design Method for Bridge Evaluation Considering PSC Beam Bridge Experiment Results

PSC Beam교의 실측실험을 반영한 한계상태설계법 기반 교량 평가법 적용 분석

  • Received : 2021.11.09
  • Accepted : 2021.11.23
  • Published : 2021.12.31

Abstract

This study analyzes the applicability of limit state design method on bridge evaluation by considering the experiment of the existing bridge. The test strength of the member is obtained from the PSC beam bridge experiment. The test strength is compared with the calculated strength obtained from the statistical characteristics of material test strength and the two values are almost the same. The response modification factor and dynamic impact factor are obtained from the vehicle loading test. The rating factor is calculated by applying limit state design method as well as current evaluation method and the results are compared. The reliability index of the test bridge is calculated by using the statistical properties of the member strength obtained from material test and simulation. When the statistical properties of the PSC beam tested in this study are applied, the reliability index with a larger value was obtained than the reliability index obtained with the statistical properties of the design code.

본 연구에서는 한계상태설계법에 기반한 교량 평가법을 개발하기 위하여, 공용 중인 교량의 실측실험을 반영하여 적용성을 분석하였다. 예제 PSC Beam 실 교량의 부재 실험 결과로부터 부재의 시험강도를 구하였으며, 재료 시험값으로부터 추정된 통계특성을 적용하여 산정된 저항강도와 시험강도를 비교하였다. 부재의 시험강도와 재료의 변동성을 고려한 저항강도는 동등한 수준으로 계산되어 실측실험의 적합성이 검증되었다. 차량재하시험으로부터 응답보정계수와 동적충격계수를 계산하였으며, 실측실험 결과를 반영한 내하율을 적용하여 현행 교량 평가법과 한계상태설계법 기반으로 산정된 내하율을 비교하였다. 재료 시험값의 통계특성으로부터 추정된 부재 저항강도의 통계특성을 적용하여 실 교량의 신뢰도지수를 계산하였다. 설계기준 개발에 적용한 저항강도 통계특성으로 구한 신뢰도지수보다 실측실험의 통계특성을 적용하는 경우 더 큰 값의 신뢰도지수를 얻었다.

Keywords

Acknowledgement

이 연구는 국토교통부 건설기술연구개발사업의 연구비지원(21SCIP-B128569-05)에 의해 수행되었습니다. 이에 감사드립니다.

References

  1. Ministry of Land, Infrastructure and Transport. (2018), Bridge Design Code : KDS 24 00 00, Korea Construction Standards Center.
  2. Ministry of Land, Transport and Maritime Affairs. (2010), Highway Bridge Design Code, MLTM.
  3. American Association of State Highway and Transportation Officials (AASHTO). (1998, 2018), AASHTO LRFD Bridge Design Specifications, AASHTO, Washington, D.C.
  4. American Association of State Highway and Transportation Officials (AASHTO). (2003), Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, AASHTO, Washington, D.C.
  5. Transportation Officials. Subcommittee on Bridges (2010, 2018), The manual for bridge evaluation, AASHTO.
  6. KALIS. (2019), Specification for Detailed Violation of Safety Inspection and Precision Safety Diagnosis (Performance evaluation), Korea Authority of Land & Infrastructure Safety (KALIS), Korea.
  7. Nowak, A. S. (1999), Calibration of LRFD Bridge Design Code, NCHRP Report 368, Transportation Research Board, Washington, D.C., 9-28.
  8. Hwang, E. S. (2009), Development of Vehicular Load Model using Heavy Truck Weight Distribution (I), (II)(in Korea), Journal of the Korean Society of Civil Engineers, 29(3), 189-197(I), 199-207(II).
  9. Paik, I., Hwang, E. S., and Shin, S. (2009), Reliability analysis of concrete bridges designed with material and member resistance factors, Computers and Concrete, 6(1), 59-78. https://doi.org/10.12989/cac.2009.6.1.059
  10. Haldar, A., and Mahadevan, S. (1995), First-order and second-order reliability methods, In Probabilistic structural mechanics handbook (pp. 27-52), Springer, Boston, MA.
  11. Liu P. L. and Der Kiureghian A. (1991), "Optimization algorithms for structural reliability" Structural safety, 9, 161-177. https://doi.org/10.1016/0167-4730(91)90041-7
  12. Rackwitz, R., and Flessler, B. (1978), Structural reliability under combined random load sequences, Computers & Structures, 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9