• Title/Summary/Keyword: Streamline distributions

Search Result 37, Processing Time 0.022 seconds

Analysis for Lubrication between a Rotating Cylinder and a Translating Plate (회전하는 원통과 병진운동하는 평판사이의 윤활유동해석)

  • 정호열;정재택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.411-417
    • /
    • 2002
  • Two dimensional slow viscous flow between a rotating cylinder and a translating plate is investigated using Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the farce and the moment exerted on the cylinder are calculated. The flow rate through the gap between the cylinder and the plate is also determined as a function of the distance between the cylinder and the plate. Special attention is directed to the case of very small distance between the cylinder and the plate concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

A Study on Heat Transfer of an Underground Power Transmission Cable-Joint (지중송전케이블 접속부에서의 열전달에 관한 연구)

  • Park, M.H.;Kim, J.K.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.265-277
    • /
    • 1993
  • Recently, underground transmission system is growing continuously according to the electric power demand increase in the downtown area. Even if domestic cable makers are manufacturing 154kV oil filled cable and joint, the design technology of cable-joint has not been fully self-reliance. This study is aimed at the detail heat transfer analysis of 154kV cable-joint. So, that is cut into the five sections in order to analyze a conjugate natural convection in two dimensional $r-{\theta}$ coordinate. The streamline and temperature distributions are obtained for each sections. Also the changes of those are analyzed with respect to the variation of transmission currents and cable-joint surface heat transfer coefficients. The same analyses are also shown in view point of the maximum temperature of conductor and local equivalent conductivity.

  • PDF

Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis (원심압축기의 유동해석을 위한 준삼차원 해석기법)

  • Ahn, S. J.;Oh, H. W.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.106-112
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Performance Prediction of Centrifugal Compressor Impellers using Quasi-Three-Dimensional Analysis (준삼차원 방법에 의한 원심 압축기의 성능예측)

  • Ahn, S.J.;Oh, H.W.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.628-633
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

flow analysis in Micro Channel with a Couple of Fins (박막이 부착된 마이크로 채널 내의 유동해석)

  • Jeong Jae-Tack
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.228-233
    • /
    • 2005
  • Two-dimensional Stokes flows through a micro channel with a couple of symmetric vertical fins are investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The slip boundary conditions are applied to take account of the Knudsen number effects. For the analysis, the method of eigen function expansion and collocation method are employed. By the results, the streamline patterns and pressure distributions are shown and the force exerted on the fin and the excess pressure drop due to the fins are determined as functions of the length of the fin and Knudsen number. It may be conjectured that the force and the excess pressure drop are almost independent of the Knudsen number.

  • PDF

The Study of Supersonic Flow with Condensation Along a Wavy Wall in a Channel (波形壁 流路내에서 凝縮이 수반되는 超音速유동에 대한 硏究)

  • 권순범;김병지;김흥균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.424-431
    • /
    • 1994
  • The characteristics of supersonic flow with condensation along a wavy wall of a small Smplitude in a channel is investigated experimentally and numerically. In the present study for the case of supersonic moist air flow, the dependency of location of reflection of oblique shock wave generated by the wavy wall, and the distributions of flow properties in the flow field, on the stagnation relative humidity and temperature is clarified by the plots of streamline, iso-Mach number and iso-flow properties of numerical result and the schlieren photographs of experiment. And. experimental and numerical results are in good agreement.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

Numerical Study of Convective Heat Transfer in an Inclined Porous Media (경사진 다공성물체내에서의 자연대류에 관한 수치해석)

  • Mok I. K.;Seo J. Y.;Kim C. B.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.4
    • /
    • pp.388-395
    • /
    • 1986
  • Numerical solutions of two-dimensional, steady, and natural are investigated in a confined rectangular cavity with porous media. The saturated fluid is bounded by two isothermal vertical walls at different temperatures and two adiabatic horizontal walls. Governing equations are numerically solved by finite difference method with the up wind scheme. Distributions of streamline and temperature we. predicted for aspect ratios ranging from 0.1 to 1.0, Rayleigh numbers 50 to $10^4$, and tilt angles $0^{\circ}\;to\;60^{\circ}$. Representative plots of temperature and velocity field according to tilt angle are presented. The effects of aspect ratio, Rayleigh number, and tilt angle on local and average Nusselt numbers are obtained. The optimum conditions for maximum Nusselt number are also presented with tilt angles.

  • PDF

Stokes Flow Through a Microchannel with Projections of Constant Spacing (일정 간격의 돌출부를 갖는 마이크로채널 내의 스톡스 유동 해석)

  • Son, JeongSu;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • In this study, we analyzed a two-dimensional Stokes flow through a microchannel containing projections with constant spacing attached to each wall. The projections on the top and bottom walls were semi-circular in shape, with in-phase locations. By considering the periodicity and symmetry of the flow, the eigenfunction expansion and least squared error method were applied to determine the stream function and pressure distribution. For some typical radius and spacing values, the streamline patterns and pressure distributions in the flow field are shown, and the shear stress distributions on the boundary walls are plotted. In addition, the average pressure gradients in the microchannel are also calculated and shown with the radius and spacing of the projections. In particular, the results for the case of extremely small gaps between the projections on the top and bottom walls are in good agreement with the lubrication results.