• 제목/요약/키워드: Stream core

검색결과 137건 처리시간 0.025초

A simple Model for Separation of the Tsushima Current Stream Core by the Tsushima Island: a small viscosity limit

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • 제38권2호
    • /
    • pp.45-51
    • /
    • 2003
  • Recent observations reveal that the Tsushima Current has a double-cored structure downstream of the Tsushima Island. To explain this, a simple analytical model is proposed based on the assumption of small lateral eddy viscosity. This model suggests that an otherwise uniform current becomes to have a stream core immediately after it enters a channel due to the action of lateral friction. The core is initially broad but becomes sharper downstream. The speed at which the core develops depends on the intensity of lateral eddy viscosity. Likewise, a single-cored stream changes rapidly to a double-cored stream when it passes through an island located in the center of the channel. When the stream leaves the island behind, the reverse process from the double-to single-cored structures takes place. In this case, however, the double-cored structure is retained for a significant distance from the island. Overall, this model suggests that the double-cored structure of the Tsushima Current observed downstream of the Tsushima Island Is created by the lateral friction exerted by the Tsushima Island.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

복합형 유역모델 STREAM의 개발(II): 모델의 시험 적용 (Development of a Hybrid Watershed Model STREAM: Test Application of the Model)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.507-522
    • /
    • 2015
  • In this study, some of the model verification results of STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model), a newly-developed hybrid watershed model, are presented for the runoff processes of nonpoint source pollution. For verification study of STREAM, the model was applied to a test watershed and a sensitivity analysis was also carried out for selected parameters. STREAM was applied to the Mankyung River Watershed to review the applicability of the model in the course of model calibration and validation against the stream flow discharge, suspended sediment discharge and some water quality items (TOC, TN, TP) measured at the watershed outlet. The model setup, simulation and data I/O modules worked as designed and both of the calibration and validation results showed good agreement between the simulated and the measured data sets: NSE over 0.7 and $R^2$ greater than 0.8. The simulation results also include the spatial distribution of runoff processes and watershed mass balance at the watershed scale. Additionally, the irrigation process of the model was examined in detail at reservoirs and paddy fields.

복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론 (Development of a Hybrid Watershed Model STREAM: Model Structures and Theories)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

Verification and validation of STREAM/RAST-K for PWR analysis

  • Choe, Jiwon;Choi, Sooyoung;Zhang, Peng;Park, Jinsu;Kim, Wonkyeong;Shin, Ho Cheol;Lee, Hwan Soo;Jung, Ji-Eun;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.356-368
    • /
    • 2019
  • This paper presents the verification and validation (V&V) of the STREAM/RAST-K 2.0 code system for a pressurized water reactor (PWR) analysis. A lattice physics code STREAM and a nodal diffusion code RAST-K 2.0 have been developed by a computational reactor physics and experiment laboratory (CORE) of Ulsan National Institute of Science and Technology (UNIST) for an accurate two-step PWR analysis. The calculation modules of each code were already verified against various benchmark problems, whereas this paper focuses on the V&V of linked code system. Three PWR type reactor cores, OPR-1000, three-loop Westinghouse reactor core, and APR-1400, are selected as V&V target plants. This code system, for verification, is compared against the conventional code systems used for the calculations in nuclear design reports (NDRs) and validated against measured plant data. Compared parameters are as follows: critical boron concentration (CBC), axial shape index (ASI), assembly-wise power distribution, burnup distribution and peaking factors. STREAM/RAST-K 2.0 shows the RMS error of critical boron concentration within 20 ppm, and the RMS error of assembly power within 1.34% for all the cycles of all reactors.

UbiCore : XML 기반 RFID 미들웨어 시스템 (UbiCore : An Effective XML-based RFID Middleware System)

  • 이훈순;최현화;김병섭;이명철;박재홍;이미영;김명준;진성일
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권6호
    • /
    • pp.578-589
    • /
    • 2006
  • 유비쿼터스 컴퓨팅의 핵심 기술로 주목 받고 있는 RFID (Radio Frequency Identification) 기술의 발달로 인해 이를 이용하여 사람들에게 편의를 제공하는 응용들이 점점 늘어나고 있다. 이러한 응용들을 쉽게 개발하기 위해서는 다양한 센서를 관리하며, 센서를 통해 수집된 태그 데이타 스트림으로부터 의미있는 데이타를 추출하여 응용에 전달해주는 미들웨어 시스템이 필요하다. 본 논문에서는 UbiCore (Ubiquitous Core)라 불리는 in 기반 RFID 미들웨어 시스템을 제안한다. UbiCore는 다음과 같은 특징을 가진다. 첫째, XQueryStream이라는 XQuery에 기반한 연속 질의 언어를 제공한다. 둘째, 프리 필터링과 중간 결과 재사용을 통해 스트림 데이타에 대한 질의 처리 속도를 향상 시킨다. 셋째, 연속적으로 생성되어 들어오는 실시간 데이타뿐 아니라 트리거에 기반하여 저장된 이력 데이타에 대한 질의를 지원한다. 넷째, 컨텍스트와 서비스의 연계 정보를 표현하기 위한 마크업 언어인 CSML(Context-driven Service Markup Language)을 제공한다.

Analysis of Steady Vortex Rings Using Contour Dynamics Method for the Stream Function

  • Choi, Yoon-Rak
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, the Norbury-Fraenkel family of vortex rings is analyzed using a contour dynamics method for the stream function, which significantly reduces the numerical burden in the calculation. The stream function is formulated as the integral along the contour of the vorticity core. The integration over the logarithmic-singular segment is evaluated analytically, and the positions of the nodal points of the contour are calculated directly. The shapes of the cores and the dividing stream surfaces are found based on the mean core radius. Compared with other studies, the proposed method is verified and found to be more efficient.

Energy-Efficient and High Performance CGRA-based Multi-Core Architecture

  • Kim, Yoonjin;Kim, Heesun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.284-299
    • /
    • 2014
  • Coarse-grained reconfigurable architecture (CGRA)-based multi-core architecture aims at achieving high performance by kernel level parallelism (KLP). However, the existing CGRA-based multi-core architectures suffer from much energy and performance bottleneck when trying to exploit the KLP because of poor resource utilization caused by insufficient flexibility. In this work, we propose a new ring-based sharing fabric (RSF) to boost their flexibility level for the efficient resource utilization focusing on the kernel-stream type of the KLP. In addition, based on the RSF, we introduce a novel inter-CGRA reconfiguration technique for the efficient pipelining of kernel-stream on CGRA-based multi-core architectures. Experimental results show that the proposed approaches improve performance by up to 50.62 times and reduce energy by up to 50.16% when compared with the conventional CGRA-based multi-core architectures.

재분석자료들을 활용한 아시아-북태평양 상층제트의 강도(풍속) 및 3차원적 위치 변화 경향 (Trends of Upper Jet Streams Characteristics (Intensity, Altitude, Latitude and Longitude) Over the Asia-North Pacific Region Based on Four Reanalysis Datasets)

  • 소은미;서명석
    • 대기
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2017
  • In this study, trends of upper jet stream characteristics (intensity, altitude, latitude, and longitude) over the Asia-North Pacific region during the recent 30 (1979~2008) years were analyzed by using four reanalysis datasets (CFSR, ERA-Int., JRA-55, MERRA). We defined the characteristics of upper jet stream as the averages of mass weighted wind speed, mass-flux weighted altitude, latitude and longitude between 400 and 100 hPa. Due to the vertical averaging of jet stream characteristics, our results reveal a weaker spatial variabilities and trends than previous studies. In general, the four reanalysis datasets show similar jet stream properties (intensity, altitude, latitude and longitude) although the magnitude and trends are slightly different among the reanalysis datasets. The altitude of MERRA is slightly higher than that of others for all seasons. The domain averaged intensity shows a weakening trend except for winter and the altitude of jet stream shows an increasing trend for all seasons. Also, the meridional trend of jet core shows a poleward trend for all seasons but it shows a contrasting trend, poleward trend in the continental area but equatorward trend in the Western Pacific region during summer. The zonal trend of jet core is very weak but a relatively strong westward trend in jet core except for spring and winter. The trends of jet stream characteristics found in this study are thermodynamically consistent with the global warming trends observed in the Asia-Pacific region.

Analysis of several VERA benchmark problems with the photon transport capability of STREAM

  • Mai, Nhan Nguyen Trong;Kim, Kyeongwon;Lemaire, Matthieu;Nguyen, Tung Dong Cao;Lee, Woonghee;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2670-2689
    • /
    • 2022
  • STREAM - a lattice transport calculation code with method of characteristics for the purpose of light water reactor analysis - has been developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST). Recently, efforts have been taken to develop a photon module in STREAM to assess photon heating and the influence of gamma photon transport on power distributions, as only neutron transport was considered in previous STREAM versions. A multi-group photon library is produced for STREAM based on the ENDF/B-VII.1 library with the use of the library-processing code NJOY. The developed photon solver for the computation of 2D and 3D distributions of photon flux and energy deposition is based on the method of characteristics like the neutron solver. The photon library and photon module produced and implemented for STREAM are verified on VERA pin and assembly problems by comparison with the Monte Carlo code MCS - also developed at UNIST. A short analysis of the impact of photon transport during depletion and thermal hydraulics feedback is presented for a 2D core also from the VERA benchmark.