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Abstract—Coarse-grained reconfigurable architecture 

(CGRA)-based multi-core architecture aims at 

achieving high performance by kernel level 

parallelism (KLP). However, the existing CGRA-

based multi-core architectures suffer from much 

energy and performance bottleneck when trying to 

exploit the KLP because of poor resource utilization 

caused by insufficient flexibility. In this work, we 

propose a new ring-based sharing fabric (RSF) to 

boost their flexibility level for the efficient resource 

utilization focusing on the kernel-stream type of the 

KLP. In addition, based on the RSF, we introduce a 

novel inter-CGRA reconfiguration technique for the 

efficient pipelining of kernel-stream on CGRA-based 

multi-core architectures. Experimental results show 

that the proposed approaches improve performance 

by up to 50.62 times and reduce energy by up to 

50.16% when compared with the conventional 

CGRA-based multi-core architectures.   

 

Index Terms—Embedded systems, coarse-grained 

reconfigurable architecture (CGRA), multi-core, 

kernel level parallelism (KLP)   

I. INTRODUCTION 

The flexibility of a system is very important to 

accommodate the short time-to-market requirements for 

embedded systems. On the other hand, application-

specific optimization of embedded system becomes 

inevitable to satisfy the market demand for designers to 

meet tighter constraints on cost, performance and power. 

To compromise these incompatible demands, coarse-

grained reconfigurable architecture (CGRA) has emerged 

as a suitable solution for embedded systems [1]. It can 

boost the performance by adopting multiple processing 

elements while it can be reconfigured to adapt to 

evolving characteristics of the embedded applications 

like audio, video and graphics processing. However, 

there is a limit when a CGRA is expected to improve the 

performance of an entire application. This is because 

single CGRA is sequentially optimized for the 

parallelized computations in a kernel at a time whereas 

the overall speedup of the entire application can be 

achieved by kernel level parallelism (KLP) that several 

kernels concurrently run. Therefore, such a limitation of 

single CGRA has resulted in the appearance of CGRA-

based multi-core architecture which allows for the multi-

CGRA to support diverse KLPs – running separate 

kernels or inter-dependent kernels (kernel-stream) in 

parallel. 

However, the existing CGRA-based multi-core 

architectures suffer from much energy and performance 

bottleneck when trying to achieve the KLP. This is 

because the existing multi-CGRA structures are not 

flexible enough to adaptively support various cases of the 

KLP. It means that the resources in the multi-CGRAs 

cannot be efficiently utilized under monotonous 

aggregation of several CGRAs. Therefore, boosting their 

flexibility level for the efficient resource utilization is 

considered as a serious concern. For improving their 

flexibility, this paper provides a new multi-CGRA fabric 

with a novel reconfiguration technique focusing on the 

kernel-stream type of the KLP and its hardware 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 285 

 

implementation.  

The paper has following contributions: 

• A new ring-based sharing fabric (RSF) has been 

proposed for raising the flexibility level of the 

CGRA-based multi-core architectures.  

• A novel inter-CGRA reconfiguration technique on 

the RSF has been introduced for efficient pipelining 

of kernel-stream on CGRA-based multi-core archi- 

tectures.  

• RT-level design and synthesis have been carried out 

with varying the number of CGRAs to demonstrate 

the cost-effectiveness of the proposed approaches in 

reducing energy while enhancing its performance 

compared with the existing architecture model. 

This paper is organized as follows. After the related 

work in Section II, we briefly describe CGRA-based 

multi-core architecture and its representation as 

preliminaries in Section III. In Section IV, we present the 

motivation of our approaches. Then we propose the ring-

based sharing fabric (RSF) and the inter-CGRA 

reconfiguration technique in section V. Section VI 

illustrates the inter-CGRA control mechanism and the 

experimental results are given in Section VII. Finally we 

conclude the paper in the Section VIII. 

II. RELATED WORKS 

Until now, there have been a few multi-core 

architecture projects based on CGRAs for kernel-level 

parallelism [2-5]. However, most of them are 

monotonous aggregation of several CGRAs. For example, 

Samsung reconfigurable processor (SRP)-based 

multiprocessors have been presented in [6, 7]. In [6], the 

multiprocessor consists of sixteen reconfigurable 

processors through networks-on-chip (NoC) inter- 

connection with mesh type topology for exploiting data 

parallelism of volume rendering. However, the 

experimental result shows modest performance improve- 

ment compared with CPU/GPU improvement. It is 

because there is performance limitation with general 

NoC-based multi-core architecture. Another SRP-based 

multi-core architecture is shown in [7] - it is composed of 

ARM9 processor, two CGRAs, and AHB bus which 

couples them. Even though they have demonstrated the 

software implementation of DVB-T2 on dual CGRAs 

running at 400 MHz, this work also shows performance 

limitations because of inefficient resource utilization in 

the multi-core architecture. In addition, power/energy 

evaluation of the multiprocessors are not shown in both 

cases [6, 7].  

The Xentium tiles [8] is another example of CGRA-

based multi-core architecture. The Xentium is a 

programmable digital signal processing tile and the 

different tile processors are connected to a router on NoC. 

It turns out that the hyperspectral image compression 

algorithm can indeed be efficiently mapped on this multi-

tiled architecture and adding more tiles give a close to 

linear speedup. However, it is unclear whether other 

applications may be also successfully mapped on to the 

architecture already specialized for the compression 

algorithm. In addition, adding more tiles means increase 

of power consumption as well as speedup but such a 

power issue has not been dealt with in [8].  

Multi-core architecture with dynamically recon- 

figurable array processors [10] is more flexible than [6-9] 

because the shared data-memory banks are connected to 

all processing cores through crossbar switches unlike 

communication among the CGRAs is only restricted by 

NoC or on-chip bus in [6-9]. However the centralized 

shared data-memory banks may cause performance 

bottleneck with much power consumption when the 

number of cores increases. In addition, there are no 

quantitative evaluation and analysis about power, area, 

and timing with increasing the number of cores in [10].  

III. PRELIMINARIES 

1. CGRA-Based Multi-Core Architecture 

 

Typically, a coarse-grained reconfigurable architecture 

(CGRA)-based multi-core architecture includes general 

purpose processors (GPP), multi-CGRA, and their 

interface. Fig. 1 shows such an example of the CGRA-

based multi-core architecture – it is composed of a GPP, 

a DMA, four CGRAs, and on-chip communication 

architecture like networks-on-chip (NoC) or on-chip bus 

which couples them. The GPP executes control intensive, 

irregular code segments and the multi-CGRA performs 

data-intensive kernel code segments – in this paper, we 

make use of the multi-CGRA in Fig. 1 as base 

architecture for comparison with proposed architecture.  

Each CGRA consists of PE array (PA), data buffer 
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(DB), configuration memory (CM), and execution 

controller (EC). The PA has identical processing 

elements (PEs) containing functional units and a few 

storage units. The PA has reconfigurable interconnections 

between PEs for efficient data-transfer. The DB provides 

operand data to PA through a high bandwidth data bus. 

The CM is composed of configuration elements (CEs) 

and each CE provides context word to configure each PE. 

The EC has control data that contains execution cycles, 

read/write mode and addresses of the DB and the CE for 

correct operations of the PA. 

 

2. Symbolic Representation 

 

In this paper, we bring up the problems of resource 

utilization in the conventional multi-CGRA and propose 

new approaches to overcome such issues. Therefore, 

panoptic illustration of resource utilization in multi-

CGRA is necessary for intelligible explanation of our 

approaches. In this section, we define an efficient way 

expressed in symbols to show such a utilization status as 

Fig. 2 It shows the symbolic representation of the 

resource utilization with CM/DB usage when kernel Ki 

run on a CGRA. The meaning of the symbols for kernel 

and CGRA are defined in Figs. 2(a) and (b) respectively. 

IV. MOTIVATION 

In this section, we present the motivation of our 

approaches. The main motivation comes from the 

resource utilization problems when trying to exploit 

kernel level parallelism (KLP) on multi-CGRA. Even 

though various cases of the KLP can be considered, we 

focus on the pipelining of kernel-stream that is the most 

complex and ever-changing case.  

 

1. Pipelining of Kernel-Stream 

 

Pipelining of kernel-stream is a type of the KLP and 

means that interdependent kernels (kernel-stream) 

iteratively run on multi-CGRA in the manner of 

pipelining. In this case, each kernel may be mapped on 

each CGRA without any problems of resource utilization 

if each kernel requires CM/DB usage less than CM/DB 

capacity of each CGRA. However, there may be more 

cases causing poor utilization of resources as Example#1 

in Fig. 3 - four interdependent kernels (kernel-stream) 

iteratively run on the base multi-CGRA. First of all, 

Example#1 shows lack of DB resources when mapping 

kernel KA on CGRA#1 as Fig. 4 - KA requires 400% DB 

usage for 40 iterations whereas DB capacity of a CGRA 

is 200%. In this case, DMA-transfer ‘to DB1 (200%)’ 

and CGRA-computation ‘Pipelining for 21~40 iterations’ 

should be sequentially performed because of insufficient 

DB capacity. Such a sequential operation causes 

performance bottleneck. However, if a DB has sufficient 

capacity (400%), it allows overlap of the DMA-transfer 

with the CGRA-computation without performance 

bottleneck as the bottom of Fig. 4.  

In addition, pipelining of kernel-stream on the base 

multi-CGRA causes another case of the performance 
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Fig. 1. CGRA-based multi-core architecture. 
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bottleneck and waste of energy. It is because DB 

read/write operations frequently occur when the result 

data from the previous CGRA transfer to the next CGRA 

as input data through on-chip communication 

architecture. Fig. 5(a) shows such problems in 

Example#1 in detail. DMA transfer through on-chip 

communication architecture means frequent DB 

read/write operation and it leads to the waste of energy 

and performance bottleneck. However, if adjacent Pas are 

directly connected together in Fig. 5(b), it allows direct 

data-transfer without DB read/write operations passing 

through on-chip communication architecture.  

To sum it up, the kernel-stream (KA~KD) in 

Example#1 can be successfully mapped on the ideal 

multi-CGRA as Fig. 6 with reducing energy and 

enhancing performance compared with the base multi-

CGRA. A point to consider is that the ideal multi-CGRA 

does not include more CM/DB resources compared with 

the base multi-CGRA - shown in the bottom of Fig. 6, its 

total CM capacity (400%) is the same size as the base 

multi-CGRA and its total DB capacity (600%) is less 

than the capacity (800%) of the base multi-CGRA. 

Therefore, the ideal multi-CGRA is only configuration 

with different number of DBs per a PA with the direct 

interconnection while keeping within the bounds of the 
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total capacity. 

 

2. Necessity of Inter-CGRA Reconfiguration 

 

As mentioned in the previous section, the base multi-

CGRA suffers from performance bottleneck and much 

energy when trying to achieve kernel-stream type of the 

KLP. This is because such a monotonous aggregation of 

several CGRAs cannot be flexible to support efficient 

resource utilization. We hypothesize that a multi-CGRA 

can support component-level (CM, DB or PA) inter-

CGRA reconfiguration that means use of each 

component is not limited to a CGRA. Then the CGRA-

based multi-core architecture can be optimized for its 

performance and energy because such an inter-CGRA 

reconfiguration can efficiently utilize component-level 

resources of the multi-CGRA in various cases of kernel-

streams. In the next section, we propose a new multi-

CGRA fabric and a novel reconfiguration technique that 

support the inter-CGRA reconfiguration. 

V. INTER-CGRA RECONFIGURATION ON 

RING-BASED SHARING FABRIC (RSF) 

1. Design Objectives 

 

We can easily consider a highly flexible fabric for 

inter-CGRA reconfiguration as Fig. 7. It shows the 

completely connected fabric (CCF) based on four 

CGRAs that seems as a good candidate to facilitate 

reconfigurable inter-CGRA – the CCF can enable any 

combination of mapping between all of the CMs (or 

DBs) and all of the PAs. However, such a full 

connectivity causes significant area and power overhead 

with increasing the number of CGRAs – as shown in the 

Fig. 7, the bit-width of the interconnections between the 

components is not small. On the other hand, only less 

connectivity may degrade the reconfigurability of inter-

CGRA. Therefore, in Section V.2 through Section V.3, 

we propose ring-based sharing fabric and intra/inter-

CGRA co-reconfiguration coming close to both two 

design objectives as follows: 

• Design objective#1: The multi-CGRA fabric should 

show minimal interconnection overhead even though 

the number of CGRAs increases. 

• Design objective#2: The multi-CGRA fabric should 

be as reconfigurable as CCF.  

 

2. Ring-based Sharing Fabric (RSF) 

 

The proposed multi-CGRA fabric based on four 

CGRAs is shown in Fig. 8 – it is called ring-based 

sharing fabric (RSF). The RSF connects all of the PAs 

through single-cycle interconnections and a DB (or a 

CM) is shared by two adjacent PAs on the RSF. Such 

connectivity fits in well with design objective#1 because 

the design overhead is only interconnections and 

switching logics between two adjacent PAs. Therefore, 

the overhead is trivial even though the number of 

CGRAs increases. The next subsection illustrates inter-

CGRA reconfiguration on the RSF with the previous 

examples and suitability of RSF for design objective#2 is 

evaluated in Section V.2.B. 

 

A. Example of inter-CGRA reconfiguration 

Figs. 4 and 5 show that Example#1 causes the waste of 

energy and the performance bottleneck. However, the 

proposed RSF can be configured by inter-CGRA 

reconfiguration as Fig. 9 that is equivalent to the ideal 

multi-CGRA as Fig. 6. Therefore, the pipelining of the 
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kernel-stream can be successfully mapped on the RSF 

with reducing energy and enhancing performance 

compared with the base multi-CGRA. 

 

B. Suitability of RSF for design objective #2 

The previous example of inter-CGRA reconfiguration 

shows very successful mapping cases on the RSF with 

the ideal resource utilization. This is because the PAs in 

Example#1 fortunately utilize 1 CM or two DBs at most 

- the RSF structurally allows that a PA can utilize up to 

two CMs or two DBs. However, if a PA requires more 

than three CMs or three DBs, the RSF seems to be far 

from design objective#2 – The CCF supports that any PA 

can utilize all of CMs and DBs on the fabric. Therefore, 

how to alleviate the structural limitation of the RSF is the 

key to coming close to design objective#2. In the next 

section, we propose such a key technique on the RSF for 

supporting efficient resource utilization. 
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Fig. 10(a) illustrates an example that the pipelining of 

kernel-stream requires three DBs (500%) and it 

iteratively runs on the RSF at 50 times – each data-set 

(100%) includes operand-data for the iterative running at 

10 times. In this example, the lack of DB resources may 

be exposed on the RSF but we can alleviate the limitation 

of the RSF by shifting configuration of kernel-stream on 

multiple CGRAs. Fig. 10 illustrates how to exploit 

intra/inter-CGRA co-reconfiguration in order to achieve 

the shifting configuration. Before all, Fig. 10(b) shows 

initial configuration of the kernel-stream that PA1 

utilizes DB1 (D1 and D2) and DB4 (D3 and D4) for the 

running of 40 iterations. Then the RSF can be configured 

as Fig. 10(c) that shows the utilization of one more DB 

(DB3) for the remaining 10 iterations. The utilization of 

DB3 (D5) can be achieved by shifting the configurations 
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of PAs from ‘PA1->PA2->PA3’ to ‘PA4->PA1->PA2’. 

Therefore, the RSF operates as if a PA is connected with 

three DBs. In this case, the intra-CGRA reconfiguration 

means that PA1 and PA2 are reconfigured twice in order 

to perform KA/KB and KB/KC. On the other hand, the 

inter-CGRA reconfiguration enables that three CGRAs 

are configured with different number of CMs/DBs and 

connected through the direct interconnections. Such a co-

reconfiguration can start immediately because each CM 

is shared by two adjacent PAs that are dynamically 

reconfigurable. It means that the pipelining of the kernel-

stream continually runs on the RSF without stall as 

shown in Fig. 11.  

Fig. 12(a) shows another example that the pipelining 

of kernel-stream requires four DBs (700%) and it 

iteratively runs on the RSF at 70 times. The almost 

identical way would apply here as in the previous 

mapping with three DBs (Fig. 11) but more elaborated 

co-reconfiguration is needed because shifting 

configuration of the kernel-stream should be sequentially 

performed twice in order to utilize two more DBs (DB2 

and DB3).  

Therefore, first of all, the CMs should be initialized 

like Fig. 12(b).Unlike the previous example, the CM4 

and the CM2 include both data-set CA and CC. In addition, 

CB is also stored in the CM3 as well as the CM1 whereas 

the CM3 is not used on the previous RSF. Then the 

Configuration #1 as Fig. 12(c) and the Configuration#2 

as Fig. 12(d) work for the running of 40 iterations and 20 

iterations in the same manner of the previous case with 

three DBs. Furthermore, the RSF is lastly configured as 

Fig. 12(e) that is made possible by the initialization of 

CMs as Fig. 12(b). The configuration#3 shows the 

utilization of DB2 (D7) for the remaining 10 iterations. 

The utilization of DB2 can be achieved by the second 

shifting the configurations of PAs from ‘PA4->PA1-

>PA2’ to ‘PA3->PA4->PA1’. Therefore, the RSF operates 

as if a PA is connected with four DBs. In addition, PA1 

are reconfigured three times in order to perform 

KA/KB/KC but the capacity of two CMs (CM1 and CM4) 

is enough to support three different configurations as if 

PA1 is connected with three CMs. Finally, Fig. 12(f) 

shows the pipeline-scheduling of the kernel-stream with 

four DBs that continually runs on the RSF without 

performance degradation. In this way, intra/inter-CGRA 

co-reconfiguration can be exploited to map this example 

with up to three CMs and four DBs on the RSF. 

VI. INTER-CGRA CONTROL MECHANISM ON 

RING-BASED SHARING FABRIC (RSF) 

The synchronization between adjacent PAs is essential 

for the pipelining of kernel-stream on the RSF. In 

addition, efficient DB/CM sharing-structure is necessary 

to support inter-CGRA reconfiguration. Therefore, in this 

section, we describe implementation details of EC, DB, 

and CM to show how to control the inter-CGRA 

operations on the RSF. 

 

1. Synchronization between Adjacent PAs  

 

As shown in Fig. 13, neighbor ECs are connected to 

each other as well as two adjacent DBs/CMs. Such 

connectivity enables data-transfer including timing 

information and control signal between the ECs - it’s 

necessary for the synchronization between adjacent Pas 

for the pipelining of kernel-stream. Therefore, in the two 

following subsections, we show two cases of kernel-

Time

PA3

PA1

PA2

PA4 NOP

NOP

NOP

DB2KCPA2

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

PA2KADB1

StoreExecuteLoad

PA2KADB1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

NOP

NOP

NOP

DB2KCPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

10 Iterations

40 Iterations

PA2 PA3PA1

PA1 PA2PA4

(Configuration#1)

(Configuration#2)

 

Fig. 11. Pipeline-scheduling on the RSF according to two cases of configurations.  
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stream examples that illustrate why such data-transfer 

process is required for the synchronization between the 

PAs on the RSF.  

A. Pipelining of kernel-stream with 2 DBs 

In this subsection, we only consider a case of 

synchronization between adjacent PAs for the pipelining 

of kernel-stream with 2DBs – therefore, it means that the 

shifting configuration as Fig. 10 is unnecessary for this 

case. Fig. 14 shows such a pipeline-scheduling for 

Example#1 in Fig. 9. As shown in Fig. 14(b), each kernel 

(KA~KD) shows different execution time and kernel KB 

running on PA2 takes the longest execution time among 

them. It means that PA1, PA3 and PA4 must wait for their 

preceding kernel-execution to be finished in the second 

iteration and over. Therefore, EC1, EC3 and EC4 must 

activate their own PAs after idle cycles for the 

synchronization.  
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Fig. 12. Mapping the pipelining of the kernel-stream with four DBs on RSF (a) Pipelining of kernel-stream with four DBs, (b) 

Initialization, (c) Configuration#1, (d) Configuration#2, (e) Configuration#3, (f) Pipeline-scheduling. 
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Fig. 13. Interconnection structure among ECs. 
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In the case of EC1, the ‘IDLE’ cycles must be detected 

for the synchronized execution from PA1 to PA2. Fig. 

14(a) shows such detection process by subtracting the 

kernel KA cycles from the maximum execution cycles 

among KA~KD cycles – each kernel-cycle information is 

included in each control data (Control Data1 ~ Control 

Data4). The maximum execution cycles can be found by 

delivering the previous maximum cycles to the next EC 

in the reverse order of kernel-stream sequence – every 

EC checks whether one’s own execution cycles are 

greater than the delivered one or not. Meanwhile, there is 

no need to detect ‘IDLE’ cycle for EC3 and EC4 because 

these ECs are synchronized by ‘Intermediate Done’ 

signal from the previous EC– PA3 and PA4 are not 

activated until their ECs receive this signal.  

Fig. 15 shows every possible flow of the control 

signals among 4 ECs. Every EC may send or receive 

‘Intermediate Done’ signal because any EC can play a 

role of head, body or tail when a kernel-stream is mapped 

onto the RSF. Therefore, it is necessary that each EC is 

initialized with the control data specifying one’s own role 

for running the kernel-stream on the RSF. Fig. 16 shows 

the field layout of such a control data. ‘Partner’ field 

specifies the previous/next EC which sends or receives 

the control signal to/from the current EC. In addition, 

‘Sender’ and ‘Receiver’ field are ce – every EC checks 

whether one’s own execution cycles are greater than the 

delivered one or not. Meanwhile, used for defining the 

role of the current EC. ‘Head’ or ‘Tail’ field mean 

whether the current EC is the starting part or the ending 

part of the kernel stream. The last two fields of 

‘DB_Sel’/‘CM_Sel’ point out which CM/DB are 

preferentially used between two CMs/two DBs 

connected to the current EC.  

 

B. Pipelining of kernel-stream with 3 DBs and over  

If we consider the pipelining of kernel-stream with 

3DBs and over on the RSF, the shifting configuration as 

Fig. 10 is necessary. It means that the flow of 

‘Intermediate Done’ signals should be changed 

immediately in order to achieve the shifting 

configuration. Fig. 17 shows such a kernel-stream with 

the shifting configuration as Fig. 11 - it iteratively runs 

on the RSF at 50 times as Fig. 17(a). In the case of the 

first 40 iterations, the flow of ‘Intermediate Done’ 

signals as Fig. 17(b) enables Configuration#1 in the same 

manner of the example with two DBs in the previous 

subsection. However, for running the remaining 10 

iterations, the shifting configuration (from Configu- 

ration#1 to Configuration#2) should occur on the RSF 

and it can be achieved by changing the signal flow from 

Figs. 17(b)-(d) – EC4 is activated by ‘Intermediate Done’ 

signal from EC1 as Fig. 17(c).  

 

2. Inter-CGRA Interconnection Structure 

 

A. PE Array (PA) 

The proposed synchronization method enables direct 

data-transfer between adjacent PAs. As shown in Fig. 18,  

 

Fig. 14. Synchronization between adjacent PAs for the 

pipelining of kernel-stream with 2DBs (a) Calculation of 

‘IDLE’ cycles for PA1, (b) Pipeline-scheduling. 
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Fig. 15. Flow of ‘Intermediate Done’ signals among 4 ECs. 
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Fig. 16. Control information for the synchronization between 

adjacent PAs. 
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each PA is connected with the neighbor two PAs as mesh-

based structure in order to support efficient column-wise 

or row-wise direct data-transfer.  

 

B. Configuration Memory (CM) 

Fig. 19 shows the interconnection structure among 

adjacent ECs and CMs. It enables a CM to be shared by 

two adjacent PAs on the RSF. Therefore, the multiplexer 

(PAn INPUT MUX) is necessary for each EC to select 

one of two CMs for running PA. In addition, each CM 

controller can be activated by either one of two adjacent 

ECs.  

 

C. Data Buffer (DB) 

Fig. 20 shows the interconnection structure among 

adjacent ECs and DBs with the inner structure of a DB. 

The interconnection structure enables a DB to be shared 

by two adjacent PAs on the RSF likewise with CM - 

data-input ports of PAs are connected to the multiplexer 

(PAn INPUT MUX) for one’s own EC to select one of 

two DBs. Meanwhile, in the viewpoint of intra-structure, 

a DB has two sets of buffers, each having three banks: 

one bank connected to the write bus and the other two 

banks connected to the read buses. The two-set structure 

facilitates simultaneous access to a DB from two 

adjacent PAs as well as the overlap of data-transfer with 

computation. Fig. 21 shows the inner structure of DB 

controller to enable such a DB-access. Each EC can 

operate one of two DB-sets at the same time and any 

combination of one-to-one mapping between the two 

ECs and the two DB-sets is possible. 

Time

DB2KCPA2

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

NOP

NOP

NOP

10 Iterations

40 Iterations

PA2 PA3PA1

PA1 PA2PA4

(Configuration#1)

(Configuration#2)

PA3

PA1

PA2

PA4 NOP

 

(a) 

 

EC1 EC2

EC3

Intermediate Done

In
te

rm
e

d
ia

te
 D

o
n

e

            

EC1

EC4

In
te

rm
e

d
ia

te
 D

o
n

e

 

              (b)                            (c) 

 

EC1 EC2

EC4

Intermediate Done

In
te

rm
e

d
ia

te
 D

o
n

e

 

(d) 

Fig. 17. Flow of ‘Intermediate Done’ signals when Mapping 

the kernel-stream with three DBs (a) Pipeline-scheduling, (b) 

The signal flow for Configuration#1, (c) Activation of EC4 for 

shifting configuration, (d) The signal flow for Configuration#2. 
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Fig. 18. Direct interconnection between adjacent Pas. 
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Fig. 19. Interconnection structure among adjacent ECs and CMs. 
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Fig. 20. Interconnection structure among adjacent ECs and DBs. 
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Fig. 21. Inner structure of DB controller with two adjacent ECs. 
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VI. EXPERIMENTS AND RESULTS 

1. Architecture Implementation 

 

To demonstrate the quantitative effectiveness of the 

proposed approaches, we have implemented three 

different organizations of multi-CGRA with variation in 

the number of CGRAs as shown in Table 2 – 4, 8, 12, 

and 16 CGRAs that include the identical CGRAs 

specified in Table 1. We have designed them at RT-level 

(RTL) using Verilog HDL and synthesized gate-level 

circuits using Design Compiler [11] with 90 nm generic 

library [11] to analyze hardware cost.   

 

2. RTL-synthesis Results 

 

A. Area evaluation 

 

Table 3 shows area cost evaluation for the three cases 

of multi- CGRA with increasing the number of CGRAs. 

In the case of 4 CGRAs, the area costs of the CCF and 

the RSF have only increased by 10% and 8% 

respectively compared with the BASE. However, as the 

number of CGRAs continues to increase from 8 to 16, 

the area of the CCFs significantly increases by 19%~42% 

due to its heavy interconnections and switching logics. 
On the other hand, the RSFs have gradually increased the 

area by 11%~19% because the interconnections and 

switching logics between two adjacent PAs are only 

added according to increasing the number of CGRAs. 

Therefore, the proposed RSF is more area-efficient fabric 

compared with the CCF. 

 

B. Delay evaluation 

 

Table 4 shows the comparison of critical path delay in 

the three cases of multi-CGRA varying the number of 

CGRAs. In the case of the CCF, the critical path delay 

has considerably increased by 14.12%~25.29% 

compared with the BASE. This is because more complex 

switching logics enabling the full connectivity are 

included in the set of critical paths of the CCF when the 

number of CGRAs increases. However, the RSFs show 

the same increase rate (10%) of delay regardless of the 

number of CGRAs because only adding CGRAs with 

keeping ring-shape does not affect the critical path delay. 

Therefore, the proposed RSF is more efficient than the 

CCF in terms of the critical path delay. 

Table 3. Area comparison 

Gate Equivalent Increased5 (%) 
No’1 Arch’ 

Net2 Logic3 Total4 Net Logic Total 

BASE 311,216 5,813,381 6,124,597 - - - 

CCF 562,318 6,167,122 6,729,440 81 6 10 4 

RSF 491,591 6,094,900 6,586,491 58 5 8 

BASE 624,679 11,626,367 12,251,046 - - - 

CCF 1,585,952 13,016,128 14,602,080 154 12 19 8 

RSF 1,117,076 12,510,034 13,627,110 79 8 11 

BASE 939,966 17,438,521 18,378,487 - - - 

CCF 3,274,543 20,465,091 23,739,634 248 17 29 12 

RSF 1,940,685 19,226,564 21,167,249 106 10 15 

BASE 1,254,581 23,250,721 24,505,302 - - - 

CCF 5,706,329 28,993,032 34,699,361 355 25 42 16 

RSF 2,896,255 26,275,472 29,171,727 131 13 19 

No’1: Number of CGRAs, Net2: Net interconnect area, Logic3: Total cell 

area, Total4: Net1+Logic2, Increased5: Increase rate of area compared 

with BASE, ((CCF or RSF)/BASE–1)X100 

 

Table 4. Critical path delay comparison 

4 8 12 16 No’ 1

 

Arch’ D2(ns) Inc3(%) D2(ns) Inc3(%) D2(ns) Inc3(%) D2(ns) Inc3(%) 

BASE 3.4 - 3.4 - 3.4 - 3.4 - 

CCF 3.88 14.12 3.89 14.41 3.99 17.35 4.26 25.29 

RSF 3.74 10 3.74 10 3.74 10 3.74 10 

No’1: Number of CGRAs, D2: Critical path delay, Inc3: Increase rate of 

delay compared with BASE, ((CCF or RSF)/BASE–1)X100 

 

 

 

Table 1. Single CGRA implementation at RT-level with 

Verilog 

Components Parameters Value 

Bit-Width of Registers in a PE  16-bit 

Number of Registers in a PE 4 
Processing Element (PE) 

Array 
Number of PEs 4x4(16) 

Bit-Width of a Configuration 

Element (CE) 
32-bit 

Number of Layers for a CE 64 

Configuration 

Memory (4KB) 

Number of CEs 4x4(16) 

Number of Sets 2 

Number of Banks in a Set 3 

Bit-Width of a Bank  

(Dual-Port A/B) 
32/64-bit 

Data Buffer 

(1.5KB) 

Number of Layers for a Bank  

(Dual-Port A/B) 
64/32 

 

Table 2. Multi-CGRA implementation at RT-level with Verilog 

Architecture Number of CGRAs 

BASE(Only Bus-Connected) 

Completely Connected Fabric (CCF) 

Ring-Shaped Fabric (RSF) 

4, 8, 12, 16 
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C. Power evaluation 

We have evaluated the power consumption of the three 

cases of multi-CGRA with increasing the number of 

CGRAs as shown in Table 5. First of all, both the CCF 

and the RSF including 4 CGRAs show insignificant 

increase rate (10.68% and 5.11%) of power compared 

with the BASE. However, the power of the CCFs with 

more CGRAs (8~16) seriously increases by 

91.72%~97.70% because of its huge interconnections 

and switching logics. Mean while, the RSFs with more 

CGRAs (8~16) show the increase rate of power ranging 

from 7.31% to 21.73% because relatively fewer 

interconnections and switching logics are added 

according to increasing the number of CGRAs. Therefore, 

the proposed RSF is more power-efficient fabric 

compared with the CCF.  

 

3. Performance/energy Evaluation 

 

Table 6 shows that the test benches of kernel-streams 

that are classified by two criteria – The first criterion is 

the number of interdependent kernels and the second one 

is the number of utilized DBs. The first criterion is for 

evaluating the pipelining of the kernel-streams on the 

three cases of multi-CGRA with varying number of 

CGRAs – we assume that the pipelining of the kernel-

streams runs on the multi-CGRA whose number of 

CGRAs is equal to the number of the kernels. The second 

criterion subdivides the four cases of kernel-streams into 

more cases that require different number of DBs – in this 

case, a DB includes operand-data for the iterative 

running at 16 times. Therefore, we can evaluate how 

inter-CGRA reconfiguration on the RSF works well for 

the kernel-streams that require two DBs ~ the most DBs. 

These test benches consist of several DSP algorithms in 

order to fully utilize arithmetic and storage resources in 

PAs.  

We have evaluated performance of the test benches 

kernel-streams running on the three cases of multi-CGRA 

with increasing the number of CGRAs as Fig. 22. In all 

cases of test benches, the CCF and the RSF are much 

faster than the BASE because they allows direct data-

transfer without DB read/write operations passing 

through on-chip communication architecture. In addition, 

the CCF and the RSF show much higher performance 

improvement when the number of utilized DBs/CGRAs 

increases. It means that inter-CGRA reconfiguration 

technique really comes into its own when more DBs are 

utilized on more CGRAs. In addition, the RSF is a little 

bit faster than the CCF in all cases because shorter 

critical path delay of the RSF more than makes up for 

slightly increased execution cycles on the RSF caused by 

inter-CGRA reconfiguration. It also means that the 

pipelining of the kernel-streams with more than four DBs 

continually runs on the RSF by the shifting configuration 

without performance degradation.  

Fig. 231 shows the energy saving of the test benches 

running on the RSF compared with the CCF with varying 

the number of CGRAs. First of all, the RSF including 4 

CGRAs show modest energy saving (8.39% and 7.26%) 

compared with the CCF as Fig. 14(a) because stark 

differences between two fabrics are elusive under 4 

CGRAs. However, the energy saving on the RSFs with 

                                            
1 We have omitted the BASE in Fig. 14 in order to clarify energy 

difference between the CCF and the RSF. By the way, in this case, the 

CCF and the RSF reduce the energy by 79~97% compared with the 

BASE.  

 

Table 5. Power comparison 

Gate Equivalent Increased5 (%) 
No’1 Arch’ 

Net2 Logic3 Total4 Net Logic Total 

BASE 0.5463 0.2263 0.7726 - - - 

CCF 0.5911 0.2640 0.8551 8.20 16.66 10.68 4 

RSF 0.5578 0.2543 0.8121 2.11 12.37 5.11 

BASE 1.0307 0.3377 1.3684 - - - 

CCF 1.8859 0.7586 2.6445 82.97 124.64 93.26 8 

RSF 1.1212 0.4287 1.5499 8.78 26.95 13.26 

BASE 1.5123 0.4595 1.9718 - - - 

CCF 2.8085 1.0898 3.8983 85.71 137.17 97.70 12 

RSF 1.6698 0.7305 2.4003 10.42 58.98 21.73 

BASE 2.0252 0.6400 2.6652 - - - 

CCF 3.8230 1.2867 5.1097 88.77 101.05 91.72 16 

RSF 2.0955 0.7644 2.8599 3.47 19.44 7.31 

No’1: Number of CGRAs, Net2: Net switching power, Logic3: Cell 

internal power, Total4: Net1+Logic2, Increased5: Increase rate of power 

compared with BASE, ((CCF or RSF)/BASE–1)X100 

 

Table 6. Kernel-Streams Characteristics  

Pipelining of Kernel Streams with Increasing 

Number of Utilized DBs (Number of Iterations) 
No’ of 

Kernels 2 DBs 

(32 

Iterations) 

4 DBs 

(64 

Iterations) 

8 DBs 

(128 

Iterations) 

12 DBs 

(192 

Iterations) 

16 DBs 

(256 

Iterations) 

4 KS4T1 KS4T2 - - - 

8 KS8T1 KS8T2 KS8T3 - - 

12 KS12T1 KS12T2 KS12T3 KS12T4 - 

16 KS16T1 KS16T2 KS16T3 KS16T4 KS16T5 
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more CGRAs (8~16) increases by much 

(39.31%~50.73%) because the CCFs with more CGRAs 

(8~16) consist of huge interconnections and complex 

switching logics whereas relatively fewer 

interconnections and switching logics are added on the 

RSFs. Therefore, the proposed RSF is more energy-

efficient fabric compared with the CCF when running 

pipelining of kernel-stream. 

VIII. CONCLUSIONS 

Coarse-grained reconfigurable architecture (CGRA) 

has emerged as a suitable solution for embedded systems 

but there is a limit when a CGRA is expected to improve 

the performance of an entire application. This is because 

single CGRA is sequentially optimized for the 

parallelized computations in a kernel at a time whereas 

the overall speedup of the entire application can be 

achieved by kernel level parallelism (KLP) that several 

kernels concurrently run. Therefore, CGRA-based multi-

core architectures have appeared to support diverse KLPs. 
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Fig. 22. Performance comparison (a) 4 CGRAs, (b) 8 CGRAs, 

(c) 12 CGRAs, (d) 16 CGRAs. 
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Fig. 23. Energy comparison (a) 4 CGRAs, (b) 8 CGRAs, (c) 12 

CGRAs, (d) 16 CGRAs. 
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However, the existing CGRA-based multi-core 

architectures suffer from much energy and performance 

bottleneck because the existing multi-CGRA structures 

are not flexible enough to adaptively support various 

cases of the KLP. It means that the resources in the multi-

CGRAs cannot be efficiently utilized under monotonous 

aggregation of several CGRAs. To overcome the 

limitations, we have proposed the new ring-based sharing 

fabric (RSF) for improving the flexibility level of the 

CGRA-based multi-core architectures focusing on the 

kernel-stream type of the KLP. In addition, the novel 

inter-CGRA reconfiguration technique based on the RSF 

has been introduced for efficient pipelining of kernel-

stream. Experimental results show that the proposed 

approaches improve performance by up to 50.62 times 

and reduce energy by up to 50.16% when compared with 

the existing architecture model. 
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