
http://dx.doi.org/10.5573/JSTS.2014.14.3.284 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014

Manuscript received Nov. 24, 2013; accepted Apr. 7, 2014

Dept. of Computer Science, Sookmyung Women’s University, Korea

E-mail : {ykim, khs9101}@sookmyung.ac.kr

Energy-Efficient and High Performance CGRA-based

Multi-Core Architecture

Yoonjin Kim and Heesun Kim

Abstract—Coarse-grained reconfigurable architecture

(CGRA)-based multi-core architecture aims at

achieving high performance by kernel level

parallelism (KLP). However, the existing CGRA-

based multi-core architectures suffer from much

energy and performance bottleneck when trying to

exploit the KLP because of poor resource utilization

caused by insufficient flexibility. In this work, we

propose a new ring-based sharing fabric (RSF) to

boost their flexibility level for the efficient resource

utilization focusing on the kernel-stream type of the

KLP. In addition, based on the RSF, we introduce a

novel inter-CGRA reconfiguration technique for the

efficient pipelining of kernel-stream on CGRA-based

multi-core architectures. Experimental results show

that the proposed approaches improve performance

by up to 50.62 times and reduce energy by up to

50.16% when compared with the conventional

CGRA-based multi-core architectures.

Index Terms—Embedded systems, coarse-grained

reconfigurable architecture (CGRA), multi-core,

kernel level parallelism (KLP)

I. INTRODUCTION

The flexibility of a system is very important to

accommodate the short time-to-market requirements for

embedded systems. On the other hand, application-

specific optimization of embedded system becomes

inevitable to satisfy the market demand for designers to

meet tighter constraints on cost, performance and power.

To compromise these incompatible demands, coarse-

grained reconfigurable architecture (CGRA) has emerged

as a suitable solution for embedded systems [1]. It can

boost the performance by adopting multiple processing

elements while it can be reconfigured to adapt to

evolving characteristics of the embedded applications

like audio, video and graphics processing. However,

there is a limit when a CGRA is expected to improve the

performance of an entire application. This is because

single CGRA is sequentially optimized for the

parallelized computations in a kernel at a time whereas

the overall speedup of the entire application can be

achieved by kernel level parallelism (KLP) that several

kernels concurrently run. Therefore, such a limitation of

single CGRA has resulted in the appearance of CGRA-

based multi-core architecture which allows for the multi-

CGRA to support diverse KLPs – running separate

kernels or inter-dependent kernels (kernel-stream) in

parallel.

However, the existing CGRA-based multi-core

architectures suffer from much energy and performance

bottleneck when trying to achieve the KLP. This is

because the existing multi-CGRA structures are not

flexible enough to adaptively support various cases of the

KLP. It means that the resources in the multi-CGRAs

cannot be efficiently utilized under monotonous

aggregation of several CGRAs. Therefore, boosting their

flexibility level for the efficient resource utilization is

considered as a serious concern. For improving their

flexibility, this paper provides a new multi-CGRA fabric

with a novel reconfiguration technique focusing on the

kernel-stream type of the KLP and its hardware

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 285

implementation.

The paper has following contributions:

• A new ring-based sharing fabric (RSF) has been

proposed for raising the flexibility level of the

CGRA-based multi-core architectures.

• A novel inter-CGRA reconfiguration technique on

the RSF has been introduced for efficient pipelining

of kernel-stream on CGRA-based multi-core archi-

tectures.

• RT-level design and synthesis have been carried out

with varying the number of CGRAs to demonstrate

the cost-effectiveness of the proposed approaches in

reducing energy while enhancing its performance

compared with the existing architecture model.

This paper is organized as follows. After the related

work in Section II, we briefly describe CGRA-based

multi-core architecture and its representation as

preliminaries in Section III. In Section IV, we present the

motivation of our approaches. Then we propose the ring-

based sharing fabric (RSF) and the inter-CGRA

reconfiguration technique in section V. Section VI

illustrates the inter-CGRA control mechanism and the

experimental results are given in Section VII. Finally we

conclude the paper in the Section VIII.

II. RELATED WORKS

Until now, there have been a few multi-core

architecture projects based on CGRAs for kernel-level

parallelism [2-5]. However, most of them are

monotonous aggregation of several CGRAs. For example,

Samsung reconfigurable processor (SRP)-based

multiprocessors have been presented in [6, 7]. In [6], the

multiprocessor consists of sixteen reconfigurable

processors through networks-on-chip (NoC) inter-

connection with mesh type topology for exploiting data

parallelism of volume rendering. However, the

experimental result shows modest performance improve-

ment compared with CPU/GPU improvement. It is

because there is performance limitation with general

NoC-based multi-core architecture. Another SRP-based

multi-core architecture is shown in [7] - it is composed of

ARM9 processor, two CGRAs, and AHB bus which

couples them. Even though they have demonstrated the

software implementation of DVB-T2 on dual CGRAs

running at 400 MHz, this work also shows performance

limitations because of inefficient resource utilization in

the multi-core architecture. In addition, power/energy

evaluation of the multiprocessors are not shown in both

cases [6, 7].

The Xentium tiles [8] is another example of CGRA-

based multi-core architecture. The Xentium is a

programmable digital signal processing tile and the

different tile processors are connected to a router on NoC.

It turns out that the hyperspectral image compression

algorithm can indeed be efficiently mapped on this multi-

tiled architecture and adding more tiles give a close to

linear speedup. However, it is unclear whether other

applications may be also successfully mapped on to the

architecture already specialized for the compression

algorithm. In addition, adding more tiles means increase

of power consumption as well as speedup but such a

power issue has not been dealt with in [8].

Multi-core architecture with dynamically recon-

figurable array processors [10] is more flexible than [6-9]

because the shared data-memory banks are connected to

all processing cores through crossbar switches unlike

communication among the CGRAs is only restricted by

NoC or on-chip bus in [6-9]. However the centralized

shared data-memory banks may cause performance

bottleneck with much power consumption when the

number of cores increases. In addition, there are no

quantitative evaluation and analysis about power, area,

and timing with increasing the number of cores in [10].

III. PRELIMINARIES

1. CGRA-Based Multi-Core Architecture

Typically, a coarse-grained reconfigurable architecture

(CGRA)-based multi-core architecture includes general

purpose processors (GPP), multi-CGRA, and their

interface. Fig. 1 shows such an example of the CGRA-

based multi-core architecture – it is composed of a GPP,

a DMA, four CGRAs, and on-chip communication

architecture like networks-on-chip (NoC) or on-chip bus

which couples them. The GPP executes control intensive,

irregular code segments and the multi-CGRA performs

data-intensive kernel code segments – in this paper, we

make use of the multi-CGRA in Fig. 1 as base

architecture for comparison with proposed architecture.

Each CGRA consists of PE array (PA), data buffer

286 YOONJIN KIM et al : ENERGY-EFFICIENT AND HIGH PERFORMANCE CGRA-BASED MULTI-CORE ARCHITECTURE

(DB), configuration memory (CM), and execution

controller (EC). The PA has identical processing

elements (PEs) containing functional units and a few

storage units. The PA has reconfigurable interconnections

between PEs for efficient data-transfer. The DB provides

operand data to PA through a high bandwidth data bus.

The CM is composed of configuration elements (CEs)

and each CE provides context word to configure each PE.

The EC has control data that contains execution cycles,

read/write mode and addresses of the DB and the CE for

correct operations of the PA.

2. Symbolic Representation

In this paper, we bring up the problems of resource

utilization in the conventional multi-CGRA and propose

new approaches to overcome such issues. Therefore,

panoptic illustration of resource utilization in multi-

CGRA is necessary for intelligible explanation of our

approaches. In this section, we define an efficient way

expressed in symbols to show such a utilization status as

Fig. 2 It shows the symbolic representation of the

resource utilization with CM/DB usage when kernel Ki

run on a CGRA. The meaning of the symbols for kernel

and CGRA are defined in Figs. 2(a) and (b) respectively.

IV. MOTIVATION

In this section, we present the motivation of our

approaches. The main motivation comes from the

resource utilization problems when trying to exploit

kernel level parallelism (KLP) on multi-CGRA. Even

though various cases of the KLP can be considered, we

focus on the pipelining of kernel-stream that is the most

complex and ever-changing case.

1. Pipelining of Kernel-Stream

Pipelining of kernel-stream is a type of the KLP and

means that interdependent kernels (kernel-stream)

iteratively run on multi-CGRA in the manner of

pipelining. In this case, each kernel may be mapped on

each CGRA without any problems of resource utilization

if each kernel requires CM/DB usage less than CM/DB

capacity of each CGRA. However, there may be more

cases causing poor utilization of resources as Example#1

in Fig. 3 - four interdependent kernels (kernel-stream)

iteratively run on the base multi-CGRA. First of all,

Example#1 shows lack of DB resources when mapping

kernel KA on CGRA#1 as Fig. 4 - KA requires 400% DB

usage for 40 iterations whereas DB capacity of a CGRA

is 200%. In this case, DMA-transfer ‘to DB1 (200%)’

and CGRA-computation ‘Pipelining for 21~40 iterations’

should be sequentially performed because of insufficient

DB capacity. Such a sequential operation causes

performance bottleneck. However, if a DB has sufficient

capacity (400%), it allows overlap of the DMA-transfer

with the CGRA-computation without performance

bottleneck as the bottom of Fig. 4.

In addition, pipelining of kernel-stream on the base

multi-CGRA causes another case of the performance

Memory

Controller

Configuration
Memory (CM)

Data Buffer (DB)PE Array (PA)

Execution

Controller (EC)
Memory

Controller

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

Set 1

(S1)

Set 0

(S0)

Bank A

Bank B

Bank C

Bank A

Bank B

Bank C

REG
FILE

Configuration

Element (CE)

ALU

MUX

REG

REG
FILE

R

E

G

Processing

Element (PE)CECE

PA1

EC1

PA4

CM4

CGRA#1

CGRA#4

CM1

#
PA2

CGRA#2

CM2

PA3

CM3

CGRA#3

EC4 EC3

EC2
DB1-S1
DB1-S0

DB2-S1
DB2-S0

DB4-S1
DB4-S0

DB3-S1
DB3-S0

On-Chip Communication Architecture

General
Purpose

Processor DMA

Main
Memory
Interface

Fig. 1. CGRA-based multi-core architecture.

Symbol Meaning

Kernel Ki running on CGRA

Ci is a Set of Configuration-Data

stored in a CM with n % Usage.

D
k

is a Set of Operand/Result Data

stored in a Set in DB with m % Usage.

itr Iteration Number of Kernel Ki

Symbol Meaning

Kernel Ki running on CGRA

Ci is a Set of Configuration-Data

stored in a CM with n % Usage.

D
k

is a Set of Operand/Result Data

stored in a Set in DB with m % Usage.

itr Iteration Number of Kernel Ki

Symbol Meaning

PAn configured for running Kernel Ki

No Operation on PAn

Data-Set C
i
stored in CMn

No Configuration-Data (ND) stored in CMn

Data-Set D
k

stored in DBn-Set0 and No

Data (ND) stored in DBn-Set1

Symbol Meaning

PAn configured for running Kernel Ki

No Operation on PAn

Data-Set C
i
stored in CMn

No Configuration-Data (ND) stored in CMn

Data-Set D
k

stored in DBn-Set0 and No

Data (ND) stored in DBn-Set1

m% D
k

n%

C
i

Ki

PAn

NOP

PAn

Ki

EC

CGRA

Ki

PAn

Kernel

Ki

n%

itr
m%

Ci

Dk Ci CMn Dk

ND
DBn

Dk

ND
DBn

Ci CMn

ND
CMn

Fig. 2. Symbolic representation of kernel running on CGRA (a)

Symbol for kernel, (b) Symbol for CGRA.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 287

bottleneck and waste of energy. It is because DB

read/write operations frequently occur when the result

data from the previous CGRA transfer to the next CGRA

as input data through on-chip communication

architecture. Fig. 5(a) shows such problems in

Example#1 in detail. DMA transfer through on-chip

communication architecture means frequent DB

read/write operation and it leads to the waste of energy

and performance bottleneck. However, if adjacent Pas are

directly connected together in Fig. 5(b), it allows direct

data-transfer without DB read/write operations passing

through on-chip communication architecture.

To sum it up, the kernel-stream (KA~KD) in

Example#1 can be successfully mapped on the ideal

multi-CGRA as Fig. 6 with reducing energy and

enhancing performance compared with the base multi-

CGRA. A point to consider is that the ideal multi-CGRA

does not include more CM/DB resources compared with

the base multi-CGRA - shown in the bottom of Fig. 6, its

total CM capacity (400%) is the same size as the base

multi-CGRA and its total DB capacity (600%) is less

than the capacity (800%) of the base multi-CGRA.

Therefore, the ideal multi-CGRA is only configuration

with different number of DBs per a PA with the direct

interconnection while keeping within the bounds of the

50%

40100%

80%100%

100%
KB

KA

CA CB

D1

D2

70%

KC

CC

100%

100%

CD

D5

D6
KD

100%
100%

D3

D4

(a)

EC1

CGRA#1

CGRA#4

CGRA#2

CGRA#3

EC4 EC3

EC2

On-Chip Communication Architecture

Main
Processor DMA

Main
Memory
Interface

KA

PA1

KB

PA2

KC

PA3

KD

PA4

DB1-S1
DB1-S0

Total DB Usage/Capacity

Total CM Usage/Capacity

600%/800%

300%/400%

D1

D3

D4

D2

D6
DB4D5

ND
DB2

ND
DB3

CA
CM1 CM2

CB

CM3
CCCD

CM4

Intermediate Data

From CGRA#2/ to CGRA#4

Intermediate Data

From CGRA#1/ to CGRA#3

(b)

Fig. 3. Example#1 – pipelining of the kernel-stream composed

of four interdependent kernels on the base multi-CGRA (a)

Kernel-stream with four interdependent kernels, (b) Kernel-

stream iteratively runs on the base multi-CGRA.

Performance

Bottleneck

Lack of Resources (DB)

Sequential operation of

CGRA-Computation

and DMA-Transfer

Sufficient

Resource (DB)

Overlap of DMA-Transfer

with CGRA-Computation

Ideal CGRA#1

for Enhancing Performance
EC1

40100%

100%

100%
KA

CA

D1

D2

100%
100%

D3

D4

EC1

CGRA#1

KA

PA1
DB1-S1
DB1-S0 D1

D3

D4

D2CA
CM1

CA
CM1

KA

PA1

D1

D2

D3

D4

DB1

DMA
to DB1(200%)

DMA
to DB1(200%)

DMA
to DB1(200%)

DMA
to DB1(200%)

Pipelining for 1~20 Iterations

KA

Pipelining for 1~20 Iterations

KA

Pipelining for 21~40 Iterations

KA

Pipelining for 21~40 Iterations

KA

DMA
to DB1(200%)

DMA
to DB1(200%)

DMA
to DB1(200%)

DMA
to DB1(200%)

Pipelining for 1~20 Iterations

KA

Pipelining for 1~20 Iterations

KA

Pipelining for 21~40 Iterations

K
A

Pipelining for 21~40 Iterations

K
A

Fig. 4. Lack of resources (DB) in Example#1.

Fig. 5. Comparison between two cases of pipeline-scheduling for Example#1 (a) Pipeline-scheduling on the base multi-CGRA, (b)

Pipeline-scheduling on the multi-CGRA with direct interconnections.

288 YOONJIN KIM et al : ENERGY-EFFICIENT AND HIGH PERFORMANCE CGRA-BASED MULTI-CORE ARCHITECTURE

total capacity.

2. Necessity of Inter-CGRA Reconfiguration

As mentioned in the previous section, the base multi-

CGRA suffers from performance bottleneck and much

energy when trying to achieve kernel-stream type of the

KLP. This is because such a monotonous aggregation of

several CGRAs cannot be flexible to support efficient

resource utilization. We hypothesize that a multi-CGRA

can support component-level (CM, DB or PA) inter-

CGRA reconfiguration that means use of each

component is not limited to a CGRA. Then the CGRA-

based multi-core architecture can be optimized for its

performance and energy because such an inter-CGRA

reconfiguration can efficiently utilize component-level

resources of the multi-CGRA in various cases of kernel-

streams. In the next section, we propose a new multi-

CGRA fabric and a novel reconfiguration technique that

support the inter-CGRA reconfiguration.

V. INTER-CGRA RECONFIGURATION ON

RING-BASED SHARING FABRIC (RSF)

1. Design Objectives

We can easily consider a highly flexible fabric for

inter-CGRA reconfiguration as Fig. 7. It shows the

completely connected fabric (CCF) based on four

CGRAs that seems as a good candidate to facilitate

reconfigurable inter-CGRA – the CCF can enable any

combination of mapping between all of the CMs (or

DBs) and all of the PAs. However, such a full

connectivity causes significant area and power overhead

with increasing the number of CGRAs – as shown in the

Fig. 7, the bit-width of the interconnections between the

components is not small. On the other hand, only less

connectivity may degrade the reconfigurability of inter-

CGRA. Therefore, in Section V.2 through Section V.3,

we propose ring-based sharing fabric and intra/inter-

CGRA co-reconfiguration coming close to both two

design objectives as follows:

• Design objective#1: The multi-CGRA fabric should

show minimal interconnection overhead even though

the number of CGRAs increases.

• Design objective#2: The multi-CGRA fabric should

be as reconfigurable as CCF.

2. Ring-based Sharing Fabric (RSF)

The proposed multi-CGRA fabric based on four

CGRAs is shown in Fig. 8 – it is called ring-based

sharing fabric (RSF). The RSF connects all of the PAs

through single-cycle interconnections and a DB (or a

CM) is shared by two adjacent PAs on the RSF. Such

connectivity fits in well with design objective#1 because

the design overhead is only interconnections and

switching logics between two adjacent PAs. Therefore,

the overhead is trivial even though the number of

CGRAs increases. The next subsection illustrates inter-

CGRA reconfiguration on the RSF with the previous

examples and suitability of RSF for design objective#2 is

evaluated in Section V.2.B.

A. Example of inter-CGRA reconfiguration

Figs. 4 and 5 show that Example#1 causes the waste of

energy and the performance bottleneck. However, the

proposed RSF can be configured by inter-CGRA

reconfiguration as Fig. 9 that is equivalent to the ideal

multi-CGRA as Fig. 6. Therefore, the pipelining of the

On-Chip Communication Architecture

Main
Processor

DMA
Main

Memory
Interface

EC3 EC4

KC

PA3

KD

PA4

Total DB Usage/Capacity

Total CM Usage/Capacity

600%/600%

300%/400%

Ideal CGRA#3 CGRA#1Ideal CGRA#4Ideal CGRA#2Ideal CGRA#1

CA
CM1 D1

D2

D3

DB1

D4 KB

PA2

CM2
CB

EC2
CC

CM3 CM4
CD

D6
DB4D5

KA

PA1

EC1

Fig. 6. Ideal multi-CGRA for Example#1.

512-bit 192-bit
CM3

CM4

CM1

CM2

PA1

PA4

PA2

PA3

64-bit

PA1

PA4

PA2

PA3

DB1-S0
DB1-S1

DB2-S0
DB2-S1

DB4-S0
DB4-S1

DB3-S0
DB3-S1

 (a) (b)

(4x4 PA, 32-bit context word, and16-bit operand/result data)

Fig. 7. An example of completely connected fabric (CCF) (a)

CM-PA Interconnections, (b) PA-PA/DB Interconnections.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 289

kernel-stream can be successfully mapped on the RSF

with reducing energy and enhancing performance

compared with the base multi-CGRA.

B. Suitability of RSF for design objective #2

The previous example of inter-CGRA reconfiguration

shows very successful mapping cases on the RSF with

the ideal resource utilization. This is because the PAs in

Example#1 fortunately utilize 1 CM or two DBs at most

- the RSF structurally allows that a PA can utilize up to

two CMs or two DBs. However, if a PA requires more

than three CMs or three DBs, the RSF seems to be far

from design objective#2 – The CCF supports that any PA

can utilize all of CMs and DBs on the fabric. Therefore,

how to alleviate the structural limitation of the RSF is the

key to coming close to design objective#2. In the next

section, we propose such a key technique on the RSF for

supporting efficient resource utilization.

3. Intra/inter-CGRA Co-Reconfiguration

Fig. 10(a) illustrates an example that the pipelining of

kernel-stream requires three DBs (500%) and it

iteratively runs on the RSF at 50 times – each data-set

(100%) includes operand-data for the iterative running at

10 times. In this example, the lack of DB resources may

be exposed on the RSF but we can alleviate the limitation

of the RSF by shifting configuration of kernel-stream on

multiple CGRAs. Fig. 10 illustrates how to exploit

intra/inter-CGRA co-reconfiguration in order to achieve

the shifting configuration. Before all, Fig. 10(b) shows

initial configuration of the kernel-stream that PA1

utilizes DB1 (D1 and D2) and DB4 (D3 and D4) for the

running of 40 iterations. Then the RSF can be configured

as Fig. 10(c) that shows the utilization of one more DB

(DB3) for the remaining 10 iterations. The utilization of

DB3 (D5) can be achieved by shifting the configurations

100%

30%

50

50%

100%

40%

100%

100%
100%
100%

CA CB
CC

D5

D3

D4

D2

D1

KC
D6

CGRA#1 CGRA#2 CGRA#3

KA KB

(a)

Intra/Inter-CGRA
Co-Reconfiguration

CGRA#1 CGRA#2 CGRA#3CGRA#2

NOP

EC1 EC2

KC

EC4 EC3

PA4 PA3

KA

PA1

KB

PA2

D2
DB1D1

D4
D3 DB4

ND

DB3

ND
D5

D6 DB2

CM4
CA

CM3
ND

CB CM1

CC CM2

EC1 EC2

EC4 EC3

PA1 PA2

PA3

KC

NOP

PA2

PA3

KA

PA4

KB

PA1

D2
DB1D1

D4
D3 DB4

DB3

ND
D5

DB2

ND
D6

CM4
CA

CC
CM2

CM3
ND

CB CM1

(b) (c)

Fig. 10. Mapping the pipelining of the kernel-stream with three

DBs on the RSF (a) Pipelining of kernel-stream with three DBs,

(b) Configuration#1, (c) Configuration#2.

PA2PA1

PA4

CM1

PA3CM3

CM4 CM2

PA2PA1

PA4 PA3

DB1-S0
DB1-S1

DB4-S0
DB4-S1

DB2-S0
DB2-S1

DB3-S0
DB3-S1

PA2PA1

PA4

EC1
CM1

EC2

PA3

CM3
EC4 EC3

CM4 CM2

DB1-S0
DB1-S1

DB4-S0
DB4-S1

DB2-S0
DB2-S1

DB3-S0
DB3-S1

PA2PA1

PA4 PA3

Single cycle
Interconnection

among PAs A DB shared by
two adjacent PAs

A CM shared by
two adjacent PAs

Fig. 8. Ring-based sharing fabric (RSF).

EC3 EC4

KC

PA3

KD

PA4

Ideal CGRA#3 CGRA#1Ideal CGRA#4Ideal CGRA#2Ideal CGRA#1

CA
CM1 D1

D2

D3

DB1

D4 KB

PA2

CM2
CB

EC2
CC

CM3 CM4
CD

D6
DB4D5

KA

PA1

EC1

Ideal CGRA#1 Ideal CGRA#2

Ideal CGRA#3Ideal CGRA#4

EC1 EC2

EC4 EC3

KC

PA3

KD

PA4

D6
DB3D5

KA

PA1

KB

PA2

D2
DB1D1

D4
D3 DB4

ND
DB2ND

CM2
CB

CC
CM3

CM4
CD

CA
CM1

Fig. 9. Inter-CGRA reconfiguration for Example#1.

290 YOONJIN KIM et al : ENERGY-EFFICIENT AND HIGH PERFORMANCE CGRA-BASED MULTI-CORE ARCHITECTURE

of PAs from ‘PA1->PA2->PA3’ to ‘PA4->PA1->PA2’.

Therefore, the RSF operates as if a PA is connected with

three DBs. In this case, the intra-CGRA reconfiguration

means that PA1 and PA2 are reconfigured twice in order

to perform KA/KB and KB/KC. On the other hand, the

inter-CGRA reconfiguration enables that three CGRAs

are configured with different number of CMs/DBs and

connected through the direct interconnections. Such a co-

reconfiguration can start immediately because each CM

is shared by two adjacent PAs that are dynamically

reconfigurable. It means that the pipelining of the kernel-

stream continually runs on the RSF without stall as

shown in Fig. 11.

Fig. 12(a) shows another example that the pipelining

of kernel-stream requires four DBs (700%) and it

iteratively runs on the RSF at 70 times. The almost

identical way would apply here as in the previous

mapping with three DBs (Fig. 11) but more elaborated

co-reconfiguration is needed because shifting

configuration of the kernel-stream should be sequentially

performed twice in order to utilize two more DBs (DB2

and DB3).

Therefore, first of all, the CMs should be initialized

like Fig. 12(b).Unlike the previous example, the CM4

and the CM2 include both data-set CA and CC. In addition,

CB is also stored in the CM3 as well as the CM1 whereas

the CM3 is not used on the previous RSF. Then the

Configuration #1 as Fig. 12(c) and the Configuration#2

as Fig. 12(d) work for the running of 40 iterations and 20

iterations in the same manner of the previous case with

three DBs. Furthermore, the RSF is lastly configured as

Fig. 12(e) that is made possible by the initialization of

CMs as Fig. 12(b). The configuration#3 shows the

utilization of DB2 (D7) for the remaining 10 iterations.

The utilization of DB2 can be achieved by the second

shifting the configurations of PAs from ‘PA4->PA1-

>PA2’ to ‘PA3->PA4->PA1’. Therefore, the RSF operates

as if a PA is connected with four DBs. In addition, PA1

are reconfigured three times in order to perform

KA/KB/KC but the capacity of two CMs (CM1 and CM4)

is enough to support three different configurations as if

PA1 is connected with three CMs. Finally, Fig. 12(f)

shows the pipeline-scheduling of the kernel-stream with

four DBs that continually runs on the RSF without

performance degradation. In this way, intra/inter-CGRA

co-reconfiguration can be exploited to map this example

with up to three CMs and four DBs on the RSF.

VI. INTER-CGRA CONTROL MECHANISM ON

RING-BASED SHARING FABRIC (RSF)

The synchronization between adjacent PAs is essential

for the pipelining of kernel-stream on the RSF. In

addition, efficient DB/CM sharing-structure is necessary

to support inter-CGRA reconfiguration. Therefore, in this

section, we describe implementation details of EC, DB,

and CM to show how to control the inter-CGRA

operations on the RSF.

1. Synchronization between Adjacent PAs

As shown in Fig. 13, neighbor ECs are connected to

each other as well as two adjacent DBs/CMs. Such

connectivity enables data-transfer including timing

information and control signal between the ECs - it’s

necessary for the synchronization between adjacent Pas

for the pipelining of kernel-stream. Therefore, in the two

following subsections, we show two cases of kernel-

Time

PA3

PA1

PA2

PA4 NOP

NOP

NOP

DB2KCPA2

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

PA2KADB1

StoreExecuteLoad

PA2KADB1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

NOP

NOP

NOP

DB2KCPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

10 Iterations

40 Iterations

PA2 PA3PA1

PA1 PA2PA4

(Configuration#1)

(Configuration#2)

Fig. 11. Pipeline-scheduling on the RSF according to two cases of configurations.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 291

stream examples that illustrate why such data-transfer

process is required for the synchronization between the

PAs on the RSF.

A. Pipelining of kernel-stream with 2 DBs

In this subsection, we only consider a case of

synchronization between adjacent PAs for the pipelining

of kernel-stream with 2DBs – therefore, it means that the

shifting configuration as Fig. 10 is unnecessary for this

case. Fig. 14 shows such a pipeline-scheduling for

Example#1 in Fig. 9. As shown in Fig. 14(b), each kernel

(KA~KD) shows different execution time and kernel KB

running on PA2 takes the longest execution time among

them. It means that PA1, PA3 and PA4 must wait for their

preceding kernel-execution to be finished in the second

iteration and over. Therefore, EC1, EC3 and EC4 must

activate their own PAs after idle cycles for the

synchronization.

100%

30%

70

50%

100%

40%

100%

100%
100%
100%

CA CB
CC

D5

D3

D4

D2

D1

KC

D9

CGRA#1 CGRA#2 CGRA#3

100%
100% D7

D6

D8

40%
KA KB

(a)

CGRA#1

CGRA#1 CGRA#3CGRA#2

CGRA#3 CGRA#1

CGRA#2

CGRA#2

CGRA#3

Initial Configuration Intra/Inter-CGRA
Co-Reconfiguration

Intra/Inter-CGRA
Co-Reconfiguration

NOPNOP

NOP

EC1 EC2

NOP

EC4 EC3

PA1 PA2

PA4 PA3

CB CM1

CB CM3

CCCA
CM4

CCCA
CM2

D2
DB1D1

D4
DB4D3 DB2D7

D6
DB3D5

ND

NOP

EC1 EC2

KC

EC4 EC3

PA4 PA3

KA

PA1

KB

PA2
CB CM1

CB CM3

CCCA
CM4

CCCA
CM2

D2
DB1D1

D4
DB4D3

D6
DB3D5

DB2D7

EC1 EC2

EC4 EC3

PA1 PA2

PA3

KC

NOP

PA2

PA3

KA

PA4

KB

PA1
CB CM1

CB CM3

CCCA
CM4

CCCA
CM2

D4
DB4D3

D6
DB3D5

D9

D2
DB1

D8
DB2D7

EC1 EC2

EC4 EC3

PA2

NOP

PA2

KC

PA1

KA

PA3

KB

PA4

CB CM1

CB CM3

D4
DB4D3

D6
DB3D5

D2
DB1D9

D8
DB2D7

CA
CM4

CC CA
CM2

CC

 (b) (c) (d) (e)

Time

PA3

PA1

PA2

PA4 NOP

40 Iterations

10 Iterations

DB2KCPA2

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

DB1KCPA1

StoreExecuteLoad

DB1KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

20 Iterations

NOP

NOP

NOP

NOP

NOP

PA4KADB2

StoreExecuteLoad

PA4KADB2

StoreExecuteLoad

PA1KBPA3

StoreExecuteLoad

PA1KBPA3

StoreExecuteLoad

DB1KCPA4

StoreExecuteLoad

DB1KCPA4

StoreExecuteLoad

NOP

PA4 PA1PA3

PA1 PA2PA4

PA2 PA3PA1(Configuration#1)

(Configuration#2)

(Configuration#3)

(f)

Fig. 12. Mapping the pipelining of the kernel-stream with four DBs on RSF (a) Pipelining of kernel-stream with four DBs, (b)

Initialization, (c) Configuration#1, (d) Configuration#2, (e) Configuration#3, (f) Pipeline-scheduling.

PA2PA1

PA4

EC1
CM1

EC2

PA3

CM3
EC4 EC3

CM4 CM2

DB1-S0
DB1-S1

DB4-S0
DB4-S1

DB2-S0
DB2-S1

DB3-S0
DB3-S1

Fig. 13. Interconnection structure among ECs.

292 YOONJIN KIM et al : ENERGY-EFFICIENT AND HIGH PERFORMANCE CGRA-BASED MULTI-CORE ARCHITECTURE

In the case of EC1, the ‘IDLE’ cycles must be detected

for the synchronized execution from PA1 to PA2. Fig.

14(a) shows such detection process by subtracting the

kernel KA cycles from the maximum execution cycles

among KA~KD cycles – each kernel-cycle information is

included in each control data (Control Data1 ~ Control

Data4). The maximum execution cycles can be found by

delivering the previous maximum cycles to the next EC

in the reverse order of kernel-stream sequence – every

EC checks whether one’s own execution cycles are

greater than the delivered one or not. Meanwhile, there is

no need to detect ‘IDLE’ cycle for EC3 and EC4 because

these ECs are synchronized by ‘Intermediate Done’

signal from the previous EC– PA3 and PA4 are not

activated until their ECs receive this signal.

Fig. 15 shows every possible flow of the control

signals among 4 ECs. Every EC may send or receive

‘Intermediate Done’ signal because any EC can play a

role of head, body or tail when a kernel-stream is mapped

onto the RSF. Therefore, it is necessary that each EC is

initialized with the control data specifying one’s own role

for running the kernel-stream on the RSF. Fig. 16 shows

the field layout of such a control data. ‘Partner’ field

specifies the previous/next EC which sends or receives

the control signal to/from the current EC. In addition,

‘Sender’ and ‘Receiver’ field are ce – every EC checks

whether one’s own execution cycles are greater than the

delivered one or not. Meanwhile, used for defining the

role of the current EC. ‘Head’ or ‘Tail’ field mean

whether the current EC is the starting part or the ending

part of the kernel stream. The last two fields of

‘DB_Sel’/‘CM_Sel’ point out which CM/DB are

preferentially used between two CMs/two DBs

connected to the current EC.

B. Pipelining of kernel-stream with 3 DBs and over

If we consider the pipelining of kernel-stream with

3DBs and over on the RSF, the shifting configuration as

Fig. 10 is necessary. It means that the flow of

‘Intermediate Done’ signals should be changed

immediately in order to achieve the shifting

configuration. Fig. 17 shows such a kernel-stream with

the shifting configuration as Fig. 11 - it iteratively runs

on the RSF at 50 times as Fig. 17(a). In the case of the

first 40 iterations, the flow of ‘Intermediate Done’

signals as Fig. 17(b) enables Configuration#1 in the same

manner of the example with two DBs in the previous

subsection. However, for running the remaining 10

iterations, the shifting configuration (from Configu-

ration#1 to Configuration#2) should occur on the RSF

and it can be achieved by changing the signal flow from

Figs. 17(b)-(d) – EC4 is activated by ‘Intermediate Done’

signal from EC1 as Fig. 17(c).

2. Inter-CGRA Interconnection Structure

A. PE Array (PA)

The proposed synchronization method enables direct

data-transfer between adjacent PAs. As shown in Fig. 18,

Fig. 14. Synchronization between adjacent PAs for the

pipelining of kernel-stream with 2DBs (a) Calculation of

‘IDLE’ cycles for PA1, (b) Pipeline-scheduling.

EC1 EC2

EC4 EC3

Intermediate Done

Intermediate Done

In
te

rm
e

d
ia

te
 D

o
n

e

In
te

rm
e

d
ia

te
 D

o
n

e

Intermediate Done

Intermediate Done

In
te

rm
e

d
ia

te
 D

o
n

e

In
te

rm
e

d
ia

te
 D

o
n

e

Fig. 15. Flow of ‘Intermediate Done’ signals among 4 ECs.

Partner Sender Receiver Head Tail DB_Sel CM_Sel

Fig. 16. Control information for the synchronization between

adjacent PAs.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 293

each PA is connected with the neighbor two PAs as mesh-

based structure in order to support efficient column-wise

or row-wise direct data-transfer.

B. Configuration Memory (CM)

Fig. 19 shows the interconnection structure among

adjacent ECs and CMs. It enables a CM to be shared by

two adjacent PAs on the RSF. Therefore, the multiplexer

(PAn INPUT MUX) is necessary for each EC to select

one of two CMs for running PA. In addition, each CM

controller can be activated by either one of two adjacent

ECs.

C. Data Buffer (DB)

Fig. 20 shows the interconnection structure among

adjacent ECs and DBs with the inner structure of a DB.

The interconnection structure enables a DB to be shared

by two adjacent PAs on the RSF likewise with CM -

data-input ports of PAs are connected to the multiplexer

(PAn INPUT MUX) for one’s own EC to select one of

two DBs. Meanwhile, in the viewpoint of intra-structure,

a DB has two sets of buffers, each having three banks:

one bank connected to the write bus and the other two

banks connected to the read buses. The two-set structure

facilitates simultaneous access to a DB from two

adjacent PAs as well as the overlap of data-transfer with

computation. Fig. 21 shows the inner structure of DB

controller to enable such a DB-access. Each EC can

operate one of two DB-sets at the same time and any

combination of one-to-one mapping between the two

ECs and the two DB-sets is possible.

Time

DB2KCPA2

StoreExecuteLoad

DB2KCPA2

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA2KADB4

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

PA3KBPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

DB2KCPA1

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA1KADB3

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

PA2KBPA4

StoreExecuteLoad

NOP

NOP

NOP

10 Iterations

40 Iterations

PA2 PA3PA1

PA1 PA2PA4

(Configuration#1)

(Configuration#2)

PA3

PA1

PA2

PA4 NOP

(a)

EC1 EC2

EC3

Intermediate Done

In
te

rm
e

d
ia

te
 D

o
n

e

EC1

EC4

In
te

rm
e

d
ia

te
 D

o
n

e

 (b) (c)

EC1 EC2

EC4

Intermediate Done

In
te

rm
e

d
ia

te
 D

o
n

e

(d)

Fig. 17. Flow of ‘Intermediate Done’ signals when Mapping

the kernel-stream with three DBs (a) Pipeline-scheduling, (b)

The signal flow for Configuration#1, (c) Activation of EC4 for

shifting configuration, (d) The signal flow for Configuration#2.

Symbol Meaning

bus tap to tap off partial bits of a bus

Symbol Meaning

bus tap to tap off partial bits of a bus

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PA4 PA1 PA2

4n-bit
4n-bit

n-bit

n-bit

n-bit

n-bit

n-bitn-bit

Fig. 18. Direct interconnection between adjacent Pas.

294 YOONJIN KIM et al : ENERGY-EFFICIENT AND HIGH PERFORMANCE CGRA-BASED MULTI-CORE ARCHITECTURE

CM1 Controller

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE

EC1

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CE CE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

CECE CECE

. . .

EC4 EC2

R

E

G ALU

MUX

REG

REG

FILECECECE

PE

CM2 Controller

PA1 INPUT MUX

PA1

Fig. 19. Interconnection structure among adjacent ECs and CMs.

PA1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Bank A

Bank B

Bank C

D

E

M

U

X

DB2-Set0

M

U

X

Bank A

Bank B

Bank C

D

E

M

U

X

DB2-Set1

M

U

X

DB2 Controller

Bank A

Bank B

Bank C

D

E

M

U

X

DB1-Set0

M

U

X

Bank A

Bank B

Bank C

D

E

M

U

X

DB1-Set1

M

U

X

DB1 Controller

EC4 EC2EC1

PA1 INPUT MUX

From

PA4

From

PA4

To PA4 To PA2

From PA1

From PA2

From PA1

n-bit

4n-bit

4n-bit

4n-bit

4n-bit

4n-bit

4n-bit

n-bit

n-bit

4n-bit

4n-bit

4n-bit

4n-bit

4n-bit

4n-bit

n-bit

4n-bit
4n-bit

4n-bit

4n-bit

Fig. 20. Interconnection structure among adjacent ECs and DBs.

DB1 Controller

EC1

EC4
M

U

X

to DB1-Set0

to DB1-Set1

M

U

X

Fig. 21. Inner structure of DB controller with two adjacent ECs.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 295

VI. EXPERIMENTS AND RESULTS

1. Architecture Implementation

To demonstrate the quantitative effectiveness of the

proposed approaches, we have implemented three

different organizations of multi-CGRA with variation in

the number of CGRAs as shown in Table 2 – 4, 8, 12,

and 16 CGRAs that include the identical CGRAs

specified in Table 1. We have designed them at RT-level

(RTL) using Verilog HDL and synthesized gate-level

circuits using Design Compiler [11] with 90 nm generic

library [11] to analyze hardware cost.

2. RTL-synthesis Results

A. Area evaluation

Table 3 shows area cost evaluation for the three cases

of multi- CGRA with increasing the number of CGRAs.

In the case of 4 CGRAs, the area costs of the CCF and

the RSF have only increased by 10% and 8%

respectively compared with the BASE. However, as the

number of CGRAs continues to increase from 8 to 16,

the area of the CCFs significantly increases by 19%~42%

due to its heavy interconnections and switching logics.
On the other hand, the RSFs have gradually increased the

area by 11%~19% because the interconnections and

switching logics between two adjacent PAs are only

added according to increasing the number of CGRAs.

Therefore, the proposed RSF is more area-efficient fabric

compared with the CCF.

B. Delay evaluation

Table 4 shows the comparison of critical path delay in

the three cases of multi-CGRA varying the number of

CGRAs. In the case of the CCF, the critical path delay

has considerably increased by 14.12%~25.29%

compared with the BASE. This is because more complex

switching logics enabling the full connectivity are

included in the set of critical paths of the CCF when the

number of CGRAs increases. However, the RSFs show

the same increase rate (10%) of delay regardless of the

number of CGRAs because only adding CGRAs with

keeping ring-shape does not affect the critical path delay.

Therefore, the proposed RSF is more efficient than the

CCF in terms of the critical path delay.

Table 3. Area comparison

Gate Equivalent Increased5 (%)
No’1 Arch’

Net2 Logic3 Total4 Net Logic Total

BASE 311,216 5,813,381 6,124,597 - - -

CCF 562,318 6,167,122 6,729,440 81 6 10 4

RSF 491,591 6,094,900 6,586,491 58 5 8

BASE 624,679 11,626,367 12,251,046 - - -

CCF 1,585,952 13,016,128 14,602,080 154 12 19 8

RSF 1,117,076 12,510,034 13,627,110 79 8 11

BASE 939,966 17,438,521 18,378,487 - - -

CCF 3,274,543 20,465,091 23,739,634 248 17 29 12

RSF 1,940,685 19,226,564 21,167,249 106 10 15

BASE 1,254,581 23,250,721 24,505,302 - - -

CCF 5,706,329 28,993,032 34,699,361 355 25 42 16

RSF 2,896,255 26,275,472 29,171,727 131 13 19

No’1: Number of CGRAs, Net2: Net interconnect area, Logic3: Total cell

area, Total4: Net1+Logic2, Increased5: Increase rate of area compared

with BASE, ((CCF or RSF)/BASE–1)X100

Table 4. Critical path delay comparison

4 8 12 16 No’ 1

Arch’ D2(ns) Inc3(%) D2(ns) Inc3(%) D2(ns) Inc3(%) D2(ns) Inc3(%)

BASE 3.4 - 3.4 - 3.4 - 3.4 -

CCF 3.88 14.12 3.89 14.41 3.99 17.35 4.26 25.29

RSF 3.74 10 3.74 10 3.74 10 3.74 10

No’1: Number of CGRAs, D2: Critical path delay, Inc3: Increase rate of

delay compared with BASE, ((CCF or RSF)/BASE–1)X100

Table 1. Single CGRA implementation at RT-level with

Verilog

Components Parameters Value

Bit-Width of Registers in a PE 16-bit

Number of Registers in a PE 4
Processing Element (PE)

Array
Number of PEs 4x4(16)

Bit-Width of a Configuration

Element (CE)
32-bit

Number of Layers for a CE 64

Configuration

Memory (4KB)

Number of CEs 4x4(16)

Number of Sets 2

Number of Banks in a Set 3

Bit-Width of a Bank

(Dual-Port A/B)
32/64-bit

Data Buffer

(1.5KB)

Number of Layers for a Bank

(Dual-Port A/B)
64/32

Table 2. Multi-CGRA implementation at RT-level with Verilog

Architecture Number of CGRAs

BASE(Only Bus-Connected)

Completely Connected Fabric (CCF)

Ring-Shaped Fabric (RSF)

4, 8, 12, 16

296 YOONJIN KIM et al : ENERGY-EFFICIENT AND HIGH PERFORMANCE CGRA-BASED MULTI-CORE ARCHITECTURE

C. Power evaluation

We have evaluated the power consumption of the three

cases of multi-CGRA with increasing the number of

CGRAs as shown in Table 5. First of all, both the CCF

and the RSF including 4 CGRAs show insignificant

increase rate (10.68% and 5.11%) of power compared

with the BASE. However, the power of the CCFs with

more CGRAs (8~16) seriously increases by

91.72%~97.70% because of its huge interconnections

and switching logics. Mean while, the RSFs with more

CGRAs (8~16) show the increase rate of power ranging

from 7.31% to 21.73% because relatively fewer

interconnections and switching logics are added

according to increasing the number of CGRAs. Therefore,

the proposed RSF is more power-efficient fabric

compared with the CCF.

3. Performance/energy Evaluation

Table 6 shows that the test benches of kernel-streams

that are classified by two criteria – The first criterion is

the number of interdependent kernels and the second one

is the number of utilized DBs. The first criterion is for

evaluating the pipelining of the kernel-streams on the

three cases of multi-CGRA with varying number of

CGRAs – we assume that the pipelining of the kernel-

streams runs on the multi-CGRA whose number of

CGRAs is equal to the number of the kernels. The second

criterion subdivides the four cases of kernel-streams into

more cases that require different number of DBs – in this

case, a DB includes operand-data for the iterative

running at 16 times. Therefore, we can evaluate how

inter-CGRA reconfiguration on the RSF works well for

the kernel-streams that require two DBs ~ the most DBs.

These test benches consist of several DSP algorithms in

order to fully utilize arithmetic and storage resources in

PAs.

We have evaluated performance of the test benches

kernel-streams running on the three cases of multi-CGRA

with increasing the number of CGRAs as Fig. 22. In all

cases of test benches, the CCF and the RSF are much

faster than the BASE because they allows direct data-

transfer without DB read/write operations passing

through on-chip communication architecture. In addition,

the CCF and the RSF show much higher performance

improvement when the number of utilized DBs/CGRAs

increases. It means that inter-CGRA reconfiguration

technique really comes into its own when more DBs are

utilized on more CGRAs. In addition, the RSF is a little

bit faster than the CCF in all cases because shorter

critical path delay of the RSF more than makes up for

slightly increased execution cycles on the RSF caused by

inter-CGRA reconfiguration. It also means that the

pipelining of the kernel-streams with more than four DBs

continually runs on the RSF by the shifting configuration

without performance degradation.

Fig. 231 shows the energy saving of the test benches

running on the RSF compared with the CCF with varying

the number of CGRAs. First of all, the RSF including 4

CGRAs show modest energy saving (8.39% and 7.26%)

compared with the CCF as Fig. 14(a) because stark

differences between two fabrics are elusive under 4

CGRAs. However, the energy saving on the RSFs with

1 We have omitted the BASE in Fig. 14 in order to clarify energy

difference between the CCF and the RSF. By the way, in this case, the

CCF and the RSF reduce the energy by 79~97% compared with the

BASE.

Table 5. Power comparison

Gate Equivalent Increased5 (%)
No’1 Arch’

Net2 Logic3 Total4 Net Logic Total

BASE 0.5463 0.2263 0.7726 - - -

CCF 0.5911 0.2640 0.8551 8.20 16.66 10.68 4

RSF 0.5578 0.2543 0.8121 2.11 12.37 5.11

BASE 1.0307 0.3377 1.3684 - - -

CCF 1.8859 0.7586 2.6445 82.97 124.64 93.26 8

RSF 1.1212 0.4287 1.5499 8.78 26.95 13.26

BASE 1.5123 0.4595 1.9718 - - -

CCF 2.8085 1.0898 3.8983 85.71 137.17 97.70 12

RSF 1.6698 0.7305 2.4003 10.42 58.98 21.73

BASE 2.0252 0.6400 2.6652 - - -

CCF 3.8230 1.2867 5.1097 88.77 101.05 91.72 16

RSF 2.0955 0.7644 2.8599 3.47 19.44 7.31

No’1: Number of CGRAs, Net2: Net switching power, Logic3: Cell

internal power, Total4: Net1+Logic2, Increased5: Increase rate of power

compared with BASE, ((CCF or RSF)/BASE–1)X100

Table 6. Kernel-Streams Characteristics

Pipelining of Kernel Streams with Increasing

Number of Utilized DBs (Number of Iterations)
No’ of

Kernels 2 DBs

(32

Iterations)

4 DBs

(64

Iterations)

8 DBs

(128

Iterations)

12 DBs

(192

Iterations)

16 DBs

(256

Iterations)

4 KS4T1 KS4T2 - - -

8 KS8T1 KS8T2 KS8T3 - -

12 KS12T1 KS12T2 KS12T3 KS12T4 -

16 KS16T1 KS16T2 KS16T3 KS16T4 KS16T5

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 297

more CGRAs (8~16) increases by much

(39.31%~50.73%) because the CCFs with more CGRAs

(8~16) consist of huge interconnections and complex

switching logics whereas relatively fewer

interconnections and switching logics are added on the

RSFs. Therefore, the proposed RSF is more energy-

efficient fabric compared with the CCF when running

pipelining of kernel-stream.

VIII. CONCLUSIONS

Coarse-grained reconfigurable architecture (CGRA)

has emerged as a suitable solution for embedded systems

but there is a limit when a CGRA is expected to improve

the performance of an entire application. This is because

single CGRA is sequentially optimized for the

parallelized computations in a kernel at a time whereas

the overall speedup of the entire application can be

achieved by kernel level parallelism (KLP) that several

kernels concurrently run. Therefore, CGRA-based multi-

core architectures have appeared to support diverse KLPs.

 5.46 X

 5.66 X

 5.59 X

 5.72 X

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

KS4T1 KS4T2

BASE

CCF

RSF

Execution Time (ns)

 18.11 X

 18.72 X

 18.83 X

 19.04 X

 19.18 X

 19.20 X

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

KS8T1 KS8T2 KS8T3

BASE

CCF

RSF

Execution Time (ns)

(a) (b)

 33.15 X

 33.63 X
 32.81 X

 33.45 X

 31.85 X

 32.92 X

 29.97 X

 31.89 X

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

KS12T1 KS12T2 KS12T3 KS12T4

BASE

CCF

RSF

Execution Time (ns)

(c)

 45.08 X

 50.62 X
 40.70 X

 46.23 X

 43.40 X

 48.65 X

 44.88 X

 49.95 X

 45.39 X

 50.39 X

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

KS16T1 KS16T2 KS16T3 KS16T4 KS16T5

BASE

CCF

RSF

Execution Time (ns)

(d)

Fig. 22. Performance comparison (a) 4 CGRAs, (b) 8 CGRAs,

(c) 12 CGRAs, (d) 16 CGRAs.

7.26 %

8.39 %

0

10

20

30

40

50

60

KS4T1 KS4T2

CCF
RSF

Energy (fJ)

41.44 %

42.03 %

43.30 %

0

50

100

150

200

KS8T1 KS8T2 KS8T3

CCF

RSF

Energy (fJ)

(a) (b)

0

50

100

150

200

250

KS12T1 KS12T2 KS12T3 KS12T4

Energy (fJ)

CCF

RSF

42.14 %

40.43 %

39.61 %

39.31 %

(c)

0

50

100

150

200

250

300

350

400

KS16T1 KS16T2 KS16T3 KS16T4 KS16T5

Energy (fJ)

CCF

RSF

50.73 %
50.07 %

49.71 % 49.58 % 50.16 %

(d)

Fig. 23. Energy comparison (a) 4 CGRAs, (b) 8 CGRAs, (c) 12

CGRAs, (d) 16 CGRAs.

298 YOONJIN KIM et al : ENERGY-EFFICIENT AND HIGH PERFORMANCE CGRA-BASED MULTI-CORE ARCHITECTURE

However, the existing CGRA-based multi-core

architectures suffer from much energy and performance

bottleneck because the existing multi-CGRA structures

are not flexible enough to adaptively support various

cases of the KLP. It means that the resources in the multi-

CGRAs cannot be efficiently utilized under monotonous

aggregation of several CGRAs. To overcome the

limitations, we have proposed the new ring-based sharing

fabric (RSF) for improving the flexibility level of the

CGRA-based multi-core architectures focusing on the

kernel-stream type of the KLP. In addition, the novel

inter-CGRA reconfiguration technique based on the RSF

has been introduced for efficient pipelining of kernel-

stream. Experimental results show that the proposed

approaches improve performance by up to 50.62 times

and reduce energy by up to 50.16% when compared with

the existing architecture model.

REFERENCES

[1] Reiner Hartenstein, “A decade of reconfigurable

computing: a visionary retrospective,” in Proc. of

Design Automation and Test in Europe Conf., pp.

642-649, Mar. 2001.

[2] Aaron Wood, Adam Knight, Benjamin Ylvisaker,

and Scott Hauck, “Multi-kernel floorplanning for

enhanced CGRAs,” in Proc. of IEEE Int. Conf. on

Field-Programmable Logic and Application (FPL),

pp. 157-164, Aug. 2012

[3] Minsoo Kim, Joon Ho Song, Do-Hyung Kim, and

Shihwa Lee, “Hybrid Partitioned H.264 Full High

Definition Decoder on Embedded Quad-core,” in

Proc. of IEEE Int. Conf. on Consumer Electronics

(ICCE), pp. 279-280, Jan 2012.

[4] Kosuke Nishihara, Atsushi Hatabu, and Tatsuji

Moriyoshi, “Parallelization of H.264 video decoder

for embedded multicore processor,” in Proc. of

IEEE Int. Conf. on Multimedia and Expo, pp. 329-

332, April 2008.

[5] Minsoo Kim, Joonho Song, Dohyung Kim, and

Shihwa Lee, “H.264 decoder on embedded dual

core with dynamically load-balanced functional

partitioning,” in Proc. of IEEE Int. Conf. on Image

Processing (ICIP), pp. 3749-3752, Sept 2010.

[6] Seunghun Jin, Sang-Heon Lee, Moo-Kyoung

Chung, Yeon-Gon Cho, and Soojung Ryu,

“Implementation of a Volume Rendering on

Coarse-grained Reconfigurable Multiprocessor,” in

Proc. of IEEE Int. Conf. on Field-Programmable

Technology (FPT), pp. 243-246, Dec. 2012.

[7] Navneet Basutkar, Ho Yang, Peng Xue, Kitaek Bae,

and Young-Hwan Park, “Software-Defined DVB-T2

Receiver Using Coarse-Grained Reconfigurable Array

Processors,” in Proc. of IEEE Int. Conf. on Consumer

Electronics (ICCE), pp. 580-581, Jan. 2013.

[8] Karel H. G. Walters, André B. J. Kokkeler, Sabih

H. Gerez, and Gerard J. M. Smit, “Low-

Complexity Hyperspectral Image Compression on

a Multi-tiled Architecture,” in Proc. of IEEE

NASA/ESA Conf. on Adaptive Hardware and

Systems, pp. 330-335, July. 2009.

[9] Haitao Wei, Junqing Yu, Huafei Yu, Mingkang Qin,

and Guang R. Gao, “Software Pipelining for

Stream Programs on Resource Constrained

Multicore Architectures,” IEEE Trans. on Parallel

and Distributed Systems, vol. 23, no. 12, pp. 2338-

2350, Dec. 2012.

[10] Wei Han, Ying Yi, Mark Muir, Ioannis Nousias,

Tughrul Arslan, and Ahmet T. Erdogan, “Multicore

Architectures with Dynamically Reconfigurable

Array Processors for Wireless Broadband

Technologies,” IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, vol. 28,

no. 12, pp. 1830-1843, Dec. 2009.

[11] http://www.synopsys.com

Yoonjin Kim received the B.S.

degree in information and communi-

cation engineering from Sungkyun-

kwan University, Seoul, South Korea,

in 2003, the M.S. degree in electrical

engineering and computer science

from Seoul National University,

Seoul, South Korea, in 2005, and the Ph.D. degree in

computer engineering from Texas A&M University,

College Station, in 2009. From 2009 to 2010, he was a

Senior R&D Staff Member with the Samsung Advanced

Institute of Technology (SAIT), Gyeonggi, South Korea.

In 2010, he joined the faculty of the Department of

Computer Science at Sookmyung Women’s University in

Seoul, South Korea. His research interests include

embedded systems, computer architecture, VLSI/system-

on-chip design, and hardware/software co-design.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 299

Heesun Kim received the B.S.

degree and the M.S. degree in

computer science from Sookmyung

Women’s University, Seoul, South

Korea, in 2012 and 2014. She is

currently a R&D Staff Member with

the Dongbu HiTek, Gyeonggi, South

Korea. Her research interests include embedded systems

and reconfigurable computing.

