• 제목/요약/키워드: Strain-Hardening Behavior

검색결과 424건 처리시간 0.027초

Multiple cracking analysis of HTPP-ECC by digital image correlation method

  • Felekoglu, Burak;Keskinates, Muhammer
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.831-848
    • /
    • 2016
  • This study aims to characterize the multiple cracking behavior of HTPP-ECC (High tenacity polypropylene fiber reinforced engineered cementitious composites) by Digital Image Correlation (DIC) Method. Digital images have been captured from a dogbone shaped HTPP-ECC specimen exhibiting 3.1% tensile ductility under loading. Images analyzed by VIC-2D software and ${\varepsilon}_{xx}$ strain maps have been obtained. Crack widths were computed from the ${\varepsilon}_{xx}$ strain maps and crack width distributions were determined throughout the specimen. The strain values from real LVDTs were also compared with virtual LVDTs digitally attached on digital images. Results confirmed that it is possible to accurately monitor the initiation and propagation of any single crack or multiple cracks by DIC at the whole interval of testing. Although the analysis require some post-processing operations, DIC based crack analysis methodology can be used as a promising and versatile tool for quality control of HTPP-ECC and other strain hardening composites.

Effects of freeze-thaw cycle on mechanical properties of saline soil and Duncan-Chang model

  • Shukai Cheng;Qing Wang;Jiaqi Wang;Yan Han
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.249-260
    • /
    • 2024
  • In order to study the mechanical propertied and change rules of undrained shear behavior of saline soil under the freeze-thaw cycles, an improved constitutive model reflecting the effects of freeze-thaw cycles was proposed based on the traditional Duncan-Chang model. The saline soil in Qian'an County, western Jilin Province, was selected as the experimental object. Then, a set of freeze-thaw cycles (0, 1, 10, 30, 60, 90, 120) tests were conducted on the saline soil specimens, and conventional consolidated undrained triaxial shear tests were conducted on the saline soil specimens that underwent freeze-thaw cycles. The stress-strain relationship was obtained by the triaxial shear test. The model parameters have a corresponding regression relationship with the number of freeze-thaw cycles. Finally, based on the function expression of the model parameters, the modified Duncan-Chang model with the number of freeze-thaw cycles as the influence factor was established, whilst the calculation program of the modified model is compiled. Based on the test results, the stress-strain relationship of the saline soil specimen shows strain hardening. The shear strength gradually decreases with the increase of freeze-thaw cycle. The 10 freeze-thaw cycles are the turning point in the trend of changes of the mechanical properties of saline soils. The calculated and experimental stress-strain relationship are compared, and the comparison between the calculated value of the model and the experimental value showed that the two had a good consistency, which verified the validity of the modified Duncan-Chang model in reflecting the effects of the freeze-thaw cycle.

포천석분의 응력-변형률 거동특성 (Characteristics of Stress-Strain for Pocheon stone sludge)

  • 김찬기;박권준;조원범;이종천
    • 한국지반신소재학회논문집
    • /
    • 제12권3호
    • /
    • pp.55-64
    • /
    • 2013
  • 본 연구는 포천석분을 재성형하여 등방압축-팽창시험과 구속압력을 달리한 일련의 비배수삼축압축시험을 실시하여 Lade 단일항복면 구성모델의 토질매개변수를 결정하였으며, 실험결과의 역해석을 통하여 단일항복면 구성모델의 적용성과 포천석분의 거동특성을 확인하였다. 그 결과 포천석분은 축변형률이 증가함에 따라 축차응력이 증가하는 경화현상을 보이고 있으며 큰축변형률에서 파괴되므로 실용적인 파괴기준을 검토할 필요성을 확인하였으며, 구성모델의 11개 토질매개변수를 이용하여 시험치를 역해석한 결과 응력-변형거동을 양호하게 예측하지만 항복함수에 관련된 토질매개변수를 파괴규준에 관련한 상관식과 상수로 역해석한 경우는 다소 상이한 양상을 보이고 있다.

강모래의 응력경로에 따른 단일항복면 구성모델의 토질매개변수 특성 (Characteristics of River Sand Soil Parameter for Single Work-Hardening Constitutive Model to Stress Path)

  • 이종천;조원범
    • 한국항해항만학회지
    • /
    • 제36권5호
    • /
    • pp.395-400
    • /
    • 2012
  • 흙의 응력-변형 관계는 흙의 종류, 밀도, 응력수준 및 응력경로에 의존한다. 이들 요소들을 통합한 구성모델의 개발을 통해 정확한 흙의 응력-변형관계가 예측되고 있다. 본 연구에서는 백마강 모래를 이용하여 등방압축-팽창실험과 일련의 응력경로를 달리한 배수삼축압축시험을 통하여 응력경로에 따른 Lade의 단일항복면 구성모델의 토질매개변수 특성에 대하여 알아보았다. 그 결과 항복기준에 관련된 토질매개변수 h, ${\alpha}$는 응력수준 및 응력경로에 대한 영향이 미소하며, 응력-변형거동에 미치는 영향이 작은 것을 확인할 수 있었다. 그리고 항복함수에 관련된 토질매개변수 h와 ${\alpha}$는 파괴규준에 관련한 토질매개변수와 관련성이 매우 높아 ${\eta}_1$에 관한 식으로 대체할 수 있으며, 이 식을 이용한 수치해석 결과 양호하게 예측하고 있는 것을 확인 할 수 있었다.

Study of Al-Alloy Foam Compressive Behavior Based on Instrumented Sharp Indentation Technology

  • Kim Am-Kee;Tunvir Kazi
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.819-827
    • /
    • 2006
  • The stress-strain relation of aluminum (Al) alloy foam cell wall was evaluated by the instrumented sharp indentation method. The indentation in a few micron ranges was performed on the cell wall of Al-alloy foam having a composition or Al-3wt.%Si-2wt.%Cu-2wt.%Mg as well as its precursor (material prior to foaming). To extract the stress-stram relation in terms of yield stress ${\sigma}_y$, strain hardening exponent n and elastic modulus E, the closed-form dimensionless relationships between load-indentation depth curve and elasto-plastic property were used. The tensile properties of precursor material of Al-alloy foam were also measured independently by uni-axial tensile test. In order to verify the validity of the extracted stress-strain relation, it was compared with the results of tensile test and finite element (FE) analysis. A modified cubic-spherical lattice model was proposed to analyze the compressive behavior of the Al-alloy foam. The material parameters extracted by the instrumented nanoindentation method allowed the model to predict the compressive behavior of the Al-alloy foam accurately.

평면변형시험을 이용한 화강풍화토의 응력-변형률 특성 (Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test)

  • 김유성;이진광;김재홍
    • 한국지반공학회논문집
    • /
    • 제30권5호
    • /
    • pp.37-46
    • /
    • 2014
  • 다양한 지반조건을 갖고 있는 지반구조물들은 공사 설계에 대한 특성에 따라 안정성 해석을 하여 설계와 시공이 되어야 한다. 일반적으로 지반의 강도정수들은 삼축압축시험으로 분석한 결과를 설계시공에 적용하여 안정성을 해석한다. 띠하중과 같은 응력을 받고 있는 댐, 제방, 옹벽 등은 한방향의 변형이 구속되어 있는 평면변형 조건의 지반구조물들이다. 지반 조건에 맞는 안정성 해석은 적절한 강도정수들의 적용에 의해서 이루어져야 한다. 삼축압축시험에 의한 강도정수 적용은 이러한 지반구조물들을 설계할 때, 안전율이 과소평가되어 시공성과 경제성에 불리하게 작용한다. 본 연구는 화강풍화토를 대상으로 삼축압축시험과 평면변형시험을 통하여 강도정수를 산정하고 상대밀도에 따른 강도 증가에 대한 경향을 분석하고자 한다. 삼축압축시험은 응력경화가 지속적으로 발생하기 때문에 최대 변형률 15%에서 한계파괴응력을 결정짓는 반면에, 평면변형 조건에서 수행되는 시험은 강도가 증가하면서 2번의 뚜렷한 응력경화를 나타내었고, 강도정수를 결정할 수 있는 항복응력을 구분할 수 있었다.

構造용高炭素鋼材 의 高溫 低 사이클 피勞擧動 에 關한 硏究 (A Study on Low-Cycle Fatigue Behavior at Elevated Temperature of High Carbon Steel Used For Structural Purpose)

  • 옹장우;김재훈
    • 대한기계학회논문집
    • /
    • 제6권2호
    • /
    • pp.101-106
    • /
    • 1982
  • This study was undertaken to determine tensile properties and low-cycle fatigue behavior of 0.6%C high carbon steel used of structural purposes at temperatures up to 500.deg.C. In the low-cycle fatigue test the upper limit was decided by elongation(i.e. the total strain range), while the lower limit was defined by the load (i.e. zero load). The following results were obtained. Both, the ultimate tensile strength and low-cycle fatigue resistance attain the maximum values near 250.deg.C. Above this temperature the values decrease rapidly as the temperature increases. The low-cycle fatigue resistance decreases whenever there is an increase of the total strain range. Because the hardness of cycle fatigued specimen correlates cyclic hardening and cyclic softening, therefore the hardness of cycle fatigued specimen is smaller than that of the nonfatigued specimen at room temperature and 500.deg.C but much larger than the hardness of the nonfatigued specimen near 250.deg.C.

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Description of reversed yielding in thin hollow discs subject to external pressure

  • Alexandrov, Sergei E.;Pirumov, Alexander R.;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.661-676
    • /
    • 2016
  • This paper presents an elastic/plastic model that neglects strain hardening during loading, but accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior of this kind of materials have been restricted to a class of boundary value problems in which the state of stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to be used to describe reversed yielding. The new model generalizes this approach on plane stress problems assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to describe reversed yielding in thin hollow discs subject to external pressure.

마이크로역학에 의하여 제조된 고인성 섬유복합 모르타르의 역학적 특성 (Mechanical properties of ductile fiber-reinforced mortar designed based on micromechanics)

  • 김윤용;김정수;김희신;김진근;하기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.825-828
    • /
    • 2004
  • The objective of this study is to examine mechanical properties of ductile fiber-reinforced mortar designed based on micromechanics. This mortar was produced by employing raw materials commercially available in Korea. To verify property level of this material in uniaxial tension, a series of direct tensile tests were performed with varying water cement ratio. In addition to this, flexural tests as well as compressive tests were carried out. Experiments revealed that the fiber reinforced mortar exhibited high ductility represented by strain hardening behavior in uniaxial tension. Significant enhancements of ductility, in terms of strain at peak stress and post-peak behavior, were also observed during the tests in compression and in bending.

  • PDF