DOI QR코드

DOI QR Code

Effects of freeze-thaw cycle on mechanical properties of saline soil and Duncan-Chang model

  • Shukai Cheng (School of Civil Engineering and Architecture, Henan University of Science and Technology) ;
  • Qing Wang (College of Construction Engineering, Jilin University) ;
  • Jiaqi Wang (Changchun Institute of Technology) ;
  • Yan Han (College of Construction Engineering, Jilin University)
  • Received : 2023.06.26
  • Accepted : 2024.01.15
  • Published : 2024.08.10

Abstract

In order to study the mechanical propertied and change rules of undrained shear behavior of saline soil under the freeze-thaw cycles, an improved constitutive model reflecting the effects of freeze-thaw cycles was proposed based on the traditional Duncan-Chang model. The saline soil in Qian'an County, western Jilin Province, was selected as the experimental object. Then, a set of freeze-thaw cycles (0, 1, 10, 30, 60, 90, 120) tests were conducted on the saline soil specimens, and conventional consolidated undrained triaxial shear tests were conducted on the saline soil specimens that underwent freeze-thaw cycles. The stress-strain relationship was obtained by the triaxial shear test. The model parameters have a corresponding regression relationship with the number of freeze-thaw cycles. Finally, based on the function expression of the model parameters, the modified Duncan-Chang model with the number of freeze-thaw cycles as the influence factor was established, whilst the calculation program of the modified model is compiled. Based on the test results, the stress-strain relationship of the saline soil specimen shows strain hardening. The shear strength gradually decreases with the increase of freeze-thaw cycle. The 10 freeze-thaw cycles are the turning point in the trend of changes of the mechanical properties of saline soils. The calculated and experimental stress-strain relationship are compared, and the comparison between the calculated value of the model and the experimental value showed that the two had a good consistency, which verified the validity of the modified Duncan-Chang model in reflecting the effects of the freeze-thaw cycle.

Keywords

Acknowledgement

This work was supported by Key Projects of the National Natural Science Foundation of China (Grant No. 42330708), the Key Program of International (Regional) Cooperation and Exchange of National Natural Science Foundation (Grant No. 41820104001), State Key Program of the National Natural Science Foundation of China (Grant No. 41430642) and the Special Fund for Major Scientific Instruments of the National Natural Science Foundation of China (Grant No. 41627801). We sincerely thank all the reviewers and editors for their professional comments and suggestions regarding this manuscript.

References

  1. Adeli Ghareh Viran, P. and Binal, A. (2018), "Effects of repeated freeze-thaw cycles on physico-mechanical properties of cohesive soils", Arabian J. Geosci., 11(11), 250. https://doi.org/10.1007/s12517-018-3592-5.
  2. ASTM (2011), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), D2487-11, ASTM International, West Conshohocken, PA, 2011,. https://doi.org/10.1520/D2487-11.
  3. Bing, H. and He, P. (2011), "Experimental investigations on the influence of cyclical freezing and thawing on physical and mechanical properties of saline soil", Environ. Earth Sci., 64(2), 431-436. https://doi.org/10.1007/s12665-010-0858-y.
  4. Chang, D., Liu, J. and Li, X. (2015), "Normalized stress-strain behavior of silty sand under freeze-thaw cycles", Rock Soil Mech., 36(12), 3500-3505. https://doi.org/10.16285/j.rsm.2015.12.021.
  5. Chang, D., Liu, J., Li, X. and Yu, Q.. (2014), "Experiment study of effects of freezing-thawing cycles on mechanical properties of Qinghat-Tibet silty sand", Chinese J. Rock Mech. Eng., 33(7), 1496-1502. https://doi.org/10.13722/j.cnki.jrme.2014.07.023.
  6. Cheng, S., Wang, Q., Fu, H., Wang, J., Han, Y., Shen, J. and Lin, S. (2021b), "Effect of freeze-thaw cycles on the mechanical properties and constitutive model of saline soil", Geomech. Eng., 27(4), 309-322. https://doi.org/10.12989/gae.2021.27.4.309.
  7. Cheng, S., Wang, Q., Wang, N., Wang, J. and Han, Y. (2021a), "Study on mechanical properties of saline soil and evaluation of influencing factors", J. Cold Reg. Eng., 35(2), https://doi.org/10.1061/(ASCE)CR.1943-5495.0000247.
  8. Costanzo, D., Viggiani, G. and Tamagnini, C. (2006), "Directional response of a reconstituted fine-grained soil-Part I: experimental investigation", Int. J. Numer. Anal. Method. Geomech., 30(13), 1283-1301. https://doi.org/10.1002/nag.526.
  9. Dayarathne, R., Hawlader, B. and Phillips, R. (2022), "Centrifuge modelling of gas pipelines undergoing freeze-thaw cycles", Can. Geotech. J., 59(4), https://doi.org/10.1139/cgj-2020-0482.
  10. Duncan, J.M. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Division, 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458.
  11. Fang, Q.Y, Chai, S.X., Li, M. and Wei, L. (2016), "Influence of freezing-thawing cycles on compressive strength and deformation of solidified saline soil", Chinese J. Rock Mech. Eng., 35(5), 1041-1047. https://doi.org/10.13722/j.cnki.jrme.2015.1078.
  12. Fang, W., Jiang, N. and Luo, X. (2019), "Establishment of damage statistical constitutive model of loaded rock and method for determining its parameters under freeze-thaw condition", Cold Reg. Sci. Tech., 160, 31-38. https://doi.org/10.1016/j.coldregions.2019.01.004.
  13. Han, M., Peng, W., Ma, B., Yu, Q., Kasama, K., Furukawa, Z., Niu, C. and Wang, Q. (2023), "Micro-composition evolution of the undisturbed saline soil undergoing different freeze-thaw cycles", Cold Reg. Sci. Technol., 210, 103825. https://doi.org/10.1016/j.coldregions.2023.103825.
  14. Han, Y., Wang, Q., Kong, Y., Cheng, S., Wang, J. and Zhang, X. (2018b), "Experiments on the initial freezing point of dispersive saline soil", Catena, 171, 681-690. https://doi.org/10.1016/j.catena.2018.07.046.
  15. Han, Y., Wang, Q., Wang, N., Wang, J., Zhang, X., Cheng, S. and Kong, Y. (2018a), "Effect of freeze-thaw cycles on shear strength of saline soil", Cold Reg. Sci. Technol., 154, 42-53. https://doi.org/10.1016/j.coldregions.2018.06.002.
  16. Hu, T., Liu, J., Chang, D., et al. (2018), "Influence of freeze-thaw cycling on mechanical properties of silty clay and Ducan-Chang constitutive model", China J. Highway Transport, 31(2), 298-307. https://doi.org/10.19721/j.cnki.1001-7372.2018.02.032.
  17. Hui, B., Ping, H.E. and Cheng-song, Y. (2006), "Influence of sodium sulfate on soil frost heaving in an open system", J. Glaciol. Geocryology, 28(1), 126-130. https://doi.org/10.1016/j.clay.2006.09.007.
  18. Kamei, T., Ahmed, A. and Shibi, T. (2012), "Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilised with recycled Bassanite", Cold Reg. Sci. Technol., 82, 124-129. https://doi.org/10.1016/j.coldregions.2012.05.016.
  19. Kong, F., Nie, L., Xu, Y., et al. (2022), "Effects of freeze-thaw cycles on the erodibility and microstructure of soda-saline loessal soil in Northeastern China", Catena, 209, 105812. https://doi.org/10.1016/j.catena.2021.105812.
  20. Konrad, J.M. (1989), "Physical processes during freeze-thaw cycles in clayey silts", Cold Reg. Sci. Technol., 16(3), 291-303. https://doi.org/10.1016/0165-232X(89)90029-3.
  21. Liu, J., Chang, D. and Yu, Q. (2016), "Influence of freeze-thaw cycles on mechanical properties of a silty sand", Eng. Geol., 210, 23-32. https://doi.org/10.1016/j.enggeo.2016.05.019.
  22. Qi, J., Luan, M., Wang, Z., et al. (2008), "Study on undrained shear behavior and hyperbolic stress-strain relationship of saturated clays", Rock Soil Mech., 8, 2277-2282. https://doi.org/10.16285/j.rsm.2008.08.051.
  23. Qi, J., Vermeer, P.A. and Cheng, G. (2006), "A review of the influence of freeze-thaw cycles on soil geotechnical properties", Permafrost & Periglacial Processes, 17(3), 245-252. https://doi.org/10.1002/ppp.559.
  24. Qiu, W.L., Teng, F. and Pan, S.S. (2020), "Damage constitutive model of concrete under repeated load after seawater freezethaw cycles", Constr. Build. Mater., 236(5), 117560. https://doi.org/10.1016/j.conbuildmat.2019.117560.
  25. Roustaei, M., Eslami, A. and Ghazavi, M. (2015), "Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters", Cold Reg. Sci. Technol., 120, 127-137. doi:https://doi.org/10.1016/j.coldregions.2015.09.011.
  26. Simonsen, E. and Isacsson, U. (2001), "Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests", Can. Geotech. J., 38(4), 863-875. https://doi.org/10.1139/t01-007.
  27. Simonsen, E., Janoo Vincent, C. and Isacsson, U. (2002), "Resilient properties of unbound road materials during seasonal frost conditions", J. Cold Reg. Eng., 16(1), 28-50. https://doi.org/10.1061/(ASCE)0887-381X(2002)16:1(28).
  28. Wang, J., Ding, G.Y, Pan, L.Y., Cai, Y.Q. and Gao, Y.F. (2010), "Study of mechanics behavior and constitutive model of cemented soil under static triaxial tests", Rock Soil Mech., 31(5), 1407-1412. https://doi.org/10.16285/j.rsm.2010.05.043.
  29. Wang, Q., Kong, Y., Zhang, X., Ruan, T. and Chen, Y. (2016), Mechanical effect of pre-consolidation pressure of structural behavior soil", J. Southwest Jiaotong Univ., 51(5), 987-994. https://doi.org/10.3969/j.issn.0258-2724.2016.05.023.
  30. Wang, Q., Qi, J., Wang, S., Xu, J. and Yang, Y. (2020), "Effect of freeze-thaw on freezing point of a saline loess", Cold Reg. Sci. Technol., 170, 102922. https://doi.org/10.1016/j.coldregions.2019.102922.
  31. Wang, T.l., Liu, Y.J., Yan, H. and Xu, L. (2015), "An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles", Cold Reg. Sci. Technol., 112, 51-65. https://doi.org/10.1016/j.coldregions.2015.01.004.
  32. Xiang, B., Liu, E. and Yang, L. (2022), "Influences of freezing- thawing actions on mechanical properties of soils and stress and deformation of soil slope in cold regions", Scientific Reports, 12(1), 5387. https://doi.org/10.1038/s41598-022-09379-3.
  33. Yang, C.S., He, P., Cheng, G.D., Zhu, Y.L. and Zhao, S.P. (2003), "Testing study on influence of freezing and thawing on dry density and water content of soil", Chinese J. Rock Mech. Eng., 2, 2695-2699. https://doi.org/10.3321/j.issn:1000-6915.2003.z2.033.
  34. Yang, Z., Still, B. and Ge, X. (2015), "Mechanical properties of seasonally frozen and permafrost soils at high strain rate", Cold Reg. Sci. Technol., 113, 12-19. https://doi.org/10.1016/j.coldregions.2015.02.008.
  35. Yao, Y., Zhang, B. and Zhu, J. (2012), "Behaviors, constitutive models and numerical simulation of soils", China Civil Eng. J., 45(3), 127-150. http://doi.org/10.15951/j.tmgcxb.2012.03.001.
  36. Zhang, X., Liu, J. and Zhang, Y. (2014), "The experimental research on constitutive relationship of frozen silty clay based on the Duncan-Chang model", Chinese J. Solid Mech., 35(2), 150-159. https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2014.02.006.
  37. Zhang, X., Wang, Q., Li, P., et al. (2015), "Research on soil dispersion of Qian'an soil forest", J. Northeastern Univ. Nat. Sci., 36(11), 1643-1647. https://doi.org/10.3969/j.issn.1005-3026.2015.11.027.
  38. Zhang, X., Wang, Q., Wang, G., Wang, W., Chen, H. and Zhang, Z. (2017), "A study on the coupled model of hydrothermal-salt for saturated freezing salinized soil", Math. Probl. Eng., 12. https://doi.org/10.1155/2017/4918461.
  39. Zhao, G.-t., Han, Z., Zou, W.-l., et al. (2021), "Evolution of mechanical behaviours of an expansive soil during dryingwetting, freeze-thaw, and drying-wetting-freeze-thaw cycles", Bull. Eng. Geol. Environ., 80(10), 8109-8121. https://doi.org/10.1007/s10064-021-02417-w.