• Title/Summary/Keyword: Strain image

Search Result 240, Processing Time 0.027 seconds

High-Strain Rate Tensile Behavior of Pure Aluminum Single and Multi-Crystalline Materials with a Tensile Split Hopkinson Bar (인장형 홉킨슨 바 장치를 이용한 알루미늄 단결정 및 멀티결정재의 동적 실험)

  • Ha, Sangyul;Jang, Jin Hee;Yoon, Hyo Jun;Kim, KiTae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • In this study, we modified the conventional tensile split Hopkinson bar(TSHB) apparatus typically used for the high strength steel to evaluate the tensile deformation behavior of soft metallic sheet materials under high strain rates. Stress-strain curves of high purity single and multi-crystalline materials were obtained using this experimental procedure. Grain morphology and initial crystallographic orientation were characterized by EBSD(Electron Backscattered Diffraction) method measured in a FE-SEM(Field emission-scanning electron microscopy). The fractured surfaces were observed by using optical microscopy. The relationship between plastic deformation of aluminum crystalline materials under high-strain rates and the initial microstructure and the crystallographic orientations has been addressed.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

Stress and Strain for Perated Tensile Specimen -Experiemental Measurements and FEA Simulations

  • Um, Gi-Jeung;Kim, Hyoung-Jin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.489-494
    • /
    • 2006
  • The strain distribution in the vicinity of a hole in a tensile strip was measured using an image correlation method. The objective of this study is to evaluate the capability of predicting the strain component response using a constitutive model that was developed for use with paper materials. The need for a special constitutive model for paper derives from the characteristics of pronounced anisotropy and the fact that the material behaves differently under compressive loading than it does under tensile loading. The results of the simulation showed that predictions of strain distribution around the hole were in agreement with the experimental result trends, however, the agreement deteriorated as the edge of the hole was reached. It was observed that there is extensive inelastic strain that takes place around the hole prior to failure of the tensile strip. The simulation results showed that any difference between tensile and compressive behavior that may exist for paper material does not have any significant effect for the problem of this study because the level of compressive stress is quite low in comparison with compressive failure values.

  • PDF

Selection of design friction angle: a strain based empirical method for coarse grained soils

  • Sancak, Emirhan;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • In the design of geotechnical structures, engineers choose either peak or critical state friction angles. Unfortunately, this selection is based on engineer's preference for economy or safety and lacks the assessment of the expected level of deformation. To fill this gap in the design process, this study proposes a strain based empirical method. Proposed method is founded on the experimentally supported assumption that higher dilatancy angles result in more brittle soil response. Using numerous triaxial test data on ten different soils, an empirical design chart is developed that allows the estimation of shear strain at failure based on soil's peak dilatancy angle and mean grain diameter. Developed empirical chart is verified by conducting a small scale retaining wall physical model test. Finally, a design methodology is proposed that makes the selection of design friction angle in structured way possible based on the serviceability limits of the proposed structure.

Investigation on the Experimental Results of Anisotropic Fracture Behavior for UHSS 1470 MPa Grade Sheets (초고강도 1470 MPa급 판재의 파단 이방성 실험 결과에 관한 연구)

  • J. Lee;H. J. Bong;D. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.87-91
    • /
    • 2023
  • In the present work, the ductile fracture behaviors of ultra-high strength steel sheets along the different loading directions are investigated under various loading paths. Three loading paths, i.e., in-plane shear, uniaxial tension, plane strain tension deformations, are considered, and the corresponding specimens are described. The experiments are conducted using the digital image correlation (DIC) system to analyze the strain at the onset of the fracture. The experimental results show that the loading path for each specimen sample is linear, and different values of the fracture strains for the loading direction from the plane strain tension are observed. The ductile fracture model of the modified Mohr-Coulomb (MMC) is constructed based on the experimental data and evaluated along the rolling direction and transverse direction under various loading paths.

Ultrasound Breast Elastographic Evaluation of Mass-Forming Ductal Carcinoma-in-situ with Histological Correlation - New Findings for a Toothpaste Sign

  • Leong, Lester Chee Hao;Sim, Llewellyn Shao-Jen;Jara-Lazaro, Ana Richelia;Tan, Puay Hoon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2673-2678
    • /
    • 2016
  • Background: It is unclear as to whether the size ratio elastographic technique is useful for assessing ultrasound-detected ductal carcinoma-in-situ (DCIS) masses since they commonly lack a significant desmoplastic reaction. The objectives of this study were to determine the accuracy of this elastographic technique in DCIS and examine if there was any histopathological correlation with the grey-scale strain patterns. Materials and Methods: Female patients referred to the radiology department for image-guided breast biopsy were prospectively evaluated by ultrasound elastography prior to biopsy. Histological diagnosis was the gold standard. An elastographic size ratio of more than 1.1 was considered malignant. Elastographic strain patterns were assessed for correlation with the DCIS histological architectural patterns and nuclear grade. Results: There were 30 DCIS cases. Elastographic sensitivity for detection of malignancy was 86.7% (26/30). 10/30 (33.3%) DCIS masses demonstrated predominantly white elastographic strain patterns while 20/30 (66.7%) were predominantly black. There were 3 (10.0%) DCIS masses that showed had a co-existent bull's-eye sign and 7 (23.3%) other masses had a co-existent toothpaste sign, a strain pattern that has never been reported in the literature. Four out of 4/5 comedo DCIS showed a predominantly white strain pattern (p=0.031) while 6/7 cases with the toothpaste sign were papillary DCIS (p=0.031). There was no relationship between the strain pattern and the DCIS nuclear grade. Conclusions: The size ratio elastographic technique was found to be very sensitive for ultrasound-detected DCIS masses. While the elastographic grey-scale strain pattern should not be used for diagnostic purposes, it correlated well with the DCIS architecture.

Showing Morphological Evolution of the Strain Response Envelope of Clay with Fourier Descriptor Analysis (퓨리에 기술자를 이용한 점성토의 변형률 응답 곡선의 형상 변이 분석)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • This paper introduces a novel method to quantify the morphological evolution of the strain response envelope. The strain response envelope is defined as an image in strain increment space corresponding to the unit stress input in stress space. Based on the shape of strain response envelopes, the deformation characteristics of soils can be described using the framework of elastic-plastic theory. Fourier descriptor analysis was used to investigate the morphological characteristics of strain response envelopes. The numerical results show that when the stress input remains in the initial yield surface the Fourier descriptors remain constant. Once the stress input crosses the initial yield surface, every descriptors deals in this study change. Numerical and experimental results of this study show that clear yielding response is only found in natural block samples. Among the Fourier descriptors, the descriptor called as asymmetry is the best for detecting the yield and is minimally sensitive to the number of input stress paths.

Real-Time Implementation of Medical Ultrasound Strain Imaging System (의료용 초음파 스트레인 영상 시스템의 실시간 구현)

  • Jeong, Mok-Kun;Kwon, Sung-Jae;Bae, Moo-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

Importance of particle shape on stress-strain behaviour of crushed stone-sand mixtures

  • Kumara, Janaka J.;Hayano, Kimitoshi
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.455-470
    • /
    • 2016
  • In ballasted railway tracks, ballast fouling due to finer material intrusion has been identified as a challenging issue in track maintenance works. In this research, deformation characteristics of crushed stone-sand mixtures, simulating fresh and fouled ballasts were studied from laboratory and a 3-D discrete element method (DEM) triaxial compression tests. The DEM simulation was performed using a recently developed DEM approach, named, Yet Another Dynamic Engine (YADE). First, void ratio characteristics of crushed stone-sand mixtures were studied. Then, triaxial compression tests were conducted on specimens with 80 and 50% of relative densities simulating dense and loose states respectively. Initial DEM simulations were conducted using sphere particles. As stress-strain behaviour of crushed stone-sand mixtures evaluated by sphere particles were different from laboratory specimens, in next DEM simulations, the particles were modeled by a clump particle. The clump shape was selected using shape indexes of the actual particles evaluated by an image analysis. It was observed that the packing behaviour of laboratory crushed stone-sand mixtures were matched well with the DEM simulation with clump particles. The results also showed that the strength properties of crushed stone deteriorate when they are mixed by 30% or more of sand, specially under dense state. The results also showed that clump particles give closer stress-strain behaviour to laboratory specimens than sphere particles.