Browse > Article
http://dx.doi.org/10.3795/KSME-A.2016.40.1.023

High-Strain Rate Tensile Behavior of Pure Aluminum Single and Multi-Crystalline Materials with a Tensile Split Hopkinson Bar  

Ha, Sangyul (Dept. Corporate R&D Institute, Samsung Electro-Mechanics)
Jang, Jin Hee (Dept. of Mechanical Engineering, Pohang University of Science and Technology)
Yoon, Hyo Jun (Dept. of Mechanical Engineering, Pohang University of Science and Technology)
Kim, KiTae (Dept. of Mechanical Engineering, Pohang University of Science and Technology)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.40, no.1, 2016 , pp. 23-31 More about this Journal
Abstract
In this study, we modified the conventional tensile split Hopkinson bar(TSHB) apparatus typically used for the high strength steel to evaluate the tensile deformation behavior of soft metallic sheet materials under high strain rates. Stress-strain curves of high purity single and multi-crystalline materials were obtained using this experimental procedure. Grain morphology and initial crystallographic orientation were characterized by EBSD(Electron Backscattered Diffraction) method measured in a FE-SEM(Field emission-scanning electron microscopy). The fractured surfaces were observed by using optical microscopy. The relationship between plastic deformation of aluminum crystalline materials under high-strain rates and the initial microstructure and the crystallographic orientations has been addressed.
Keywords
TSHB(Tensile Split Hopkinson Bar); EBSD(Electron Backscattered Diffraction); DIC(Digital Image Correlation); Single Crystal; Multicrystal; Crystallographic Orientation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kolsky, H., 1949, "An Investigation of the Mechanical Properties of Materials at very High Rates of Loading," Proc. Phys. Soc., B 62, 676   DOI
2 Hopkinson, B., 1914, "A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets," Philos. Trans. R. Soc. Lond. Ser. A 213, 437-456.   DOI
3 Nicholas, T., 1981, "Tensile Testing of Materials at High Rates of Strain," Exp. Mech. pp. 177-185.
4 Jung, D.-T., 1994, "Split Hopkinson Pressure Bar Technique for Stress-Strain Measurement," The Korean Society of Mechanical Engineers Annuals Spring & Fall Conferences, pp. 33-34.
5 Kang, W.-J., Cho, S.-S., H, H., Jung, D.-T., 1997, "High Strain Rate Tensile Test of Sheet Metals with a New Tension Split Hopkinsn Bar," Trans. Korean Soc. Mech. Eng. A, Vol. 21, No. 12, pp. 2209-2219.   DOI
6 Pang, J.H.L, 2012. Lead Free Solder: Mechanics and Reliability, Springer.
7 Nemat-Nasser, S., Isaacs, J.B., Starrett, J.E., 1991, "Hopkinson Techniques for Dynamic Recovery Experiments," Proc. R. Soc. Lond., Vol. 435, pp. 371-391.   DOI
8 Rittel, D., Lee, S., Ravichandran, G., 2002, "Large Strain Constitutive Behavior of OFHC Copper over a Wide Range of Strain-Rates Using the Shear Compression Specimen," Mechanics of Materials, Vol. 34, pp. 627-642.   DOI
9 Kim, Y., Shin, S.Y., Kim, Y.G., Kim, N.J., Lee, S., 2010, "Effects of Strain Rate and Test Temperature on Torsional Deformation Behavior of API X70 and X80 Linepipe Steels," Metall. Mater. Trans., Vol. 41A, pp. 1961-1972.
10 Lindholm, U.S. and Yeakley, L.M., 1968, "High Strain-Rate Testing: Tension and Compression," Exp. Mech., Vol. 8, pp. 1-9.   DOI
11 Khan, A.S., Liu, J., Yoon, J.-W., Nambori, R., 2015, "Strain Rate Effect of High Purity Aluminum Single Crystals: Experiments and Simulations," International Journal of Plasticity, Vol. 67, pp. 39-52   DOI
12 Badulescu. C., Grédiac. M., Haddadi. H., Mathias. J. -D., Balandraud. X., Tran. H. -S., 2011, "Applying the Grid Method and Infrared Thermography to Investigate Plastic Deformation in Aluminium Multicrystal," Mechanics of Materials, Vol.43, pp. 36-53   DOI
13 Wang, Y. and Cuitino, A.M., 2002, "Full-Field Measurements of Heterogeneous Deformation Patterns on Polymeric Foams Using Digital Image Correlation," International Journal of Solids and Structures, 2002, Vol. 39, No. 13, pp. 3777-3796   DOI
14 ARAMIS System. ARAMIS User Manual-Software. Braunschweig, Germany : GOM GmbH, 2013.
15 Hosford, W. F. Jr., Fleischer, R. L., Backofen, W. A., 1960, "Tensile Deformation of Aluminum Single Crystal at Low Tempratures," Acta Metallurgica, Vol. 8, pp. 187-189.   DOI
16 Kocks. U. F., Mecking. H., 2003, "Physics and Phenomenology of Strain Hardening : the FCC Case," Progress in Materials Science, Vol.48, pp. 171-273.   DOI