• Title/Summary/Keyword: Strain calculation

Search Result 350, Processing Time 0.03 seconds

A Study on the Stress-Strain Prediction of Silty Clay (점성토(粘性土)의 응력(應力) - 변형(變形) 추정(推定)에 관(關)한 연구(硏究))

  • Cho, Seong Seup;Kang, Yea Mook;Chung, Seong Gyu;Yun, Hyun Chung
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • The paper describes the comparison between observed and predicted stress-strain characteristics of marine silty clay in Dangjin district. For prediction, the hyperbolic model which is applied the parameters acquiring by physical and triaxial compression test was adopted, and the obtained results were summarized as follows: 1. The Young's modulus were increased with decreasing of moisture contents and increasing of dry density. 2. The most affective factor to hyperbolic model is lateral stress and dry density. and than cohesion and internal friction angle. 3. The comparision between the statistical and hyperbolic values of maximum deviator stress have few accordance. and the statisticals is lower than the hyperbolics. 4. Without. much labor and tiresome procedures, effective computer program was made and applied, but technical procedure for prevents test errors of parameter calculation is importants.

  • PDF

Strain induced/enhanced ferromagnetism in $Mn_3Ge_2$thinfilms

  • Dung, Dang Duc;Feng, Wuwei;Thiet, Duong Van;Sin, Yu-Ri-Mi;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.135-135
    • /
    • 2010
  • In Mn-Ge equilibrium phase diagram, many Mn-Ge intermetallic phases can be formed with difference structures and magnetic properties. The MnGe has the cubic structure and antiferromagnetic(AFM) with Neel temperature of 197 K. The calculation predicted that the $MnGe_2$ with $Al_2Cu$-type is hard to separate between the paramagnetic(PM) states and the AFM states because this compound displays PM and AFM configuration swith similar energy. Mn-doped Ge showed the FM with Currie temperature of 285 K for bulk samples and 116 K for thin films. In addition, the $Mn_5Ge_3$ compound has hexagonal structure and FM with Curie temperature around 296K. The $Mn_{11}Ge_8$ compound has the orthorhombic structure and Tc is low at 274 K and spin flopping transition is near to 140 K. While the bulk $Mn_3Ge_2$ exhibited tetragonal structure ($a=5.745{\AA}$;$c=13.89{\AA}$) with the FM near to 300K and AFM below 150K. However, amorphous $Mn_3Ge_2$ ($a-Mn_3Ge_2$) was reported to show spin glass behavior with spin-glass transition temperature (Tg) of 53 K. In addition, the transition of crystalline $Mn_3Ge_2$ shifts under high pressure. At the atmospheric pressure, $Mn_3Ge_2$ undergoes the magnetic phase transition from AFM to FM at 158 K. The pressure dependence of the phase transition in $Mn_3Ge_2$ has been determined up to 1 GPa. The transition was found to occur at 1 GPa and 155 K with dT/dP=-0.3K/0.1 GPa. Here report that Ferromagnetic $Mn_3Ge_2$ thin films were successfully grown on GaAs(001) and GaSb(001) substrates using molecular beam epitaxy. Our result revealed that the substrate facilitates to modify magnetic and electrical properties due to tensile/compressive strain effect. The spin-flopping transition around 145 K remained for samples grown on GaSb(001) while it completely disappeared for samples grown on GaAs(001). The antiferromagnetism below 145K changed to ferromagnetism and remained upto 327K. The saturation magnetization was found to be 1.32 and $0.23\;{\mu}B/Mn$ at 5 K for samples grown on GaAs(001) and GaSb(001), respectively.

  • PDF

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.

Fatigue Safe Life Analysis of Helicopter Rotor Bearingless Hub System Composite Components (헬리콥터 로터 무베어링 허브 시스템 복합재 구성품 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • We designed bearingless rotor hub system which replace mechanical hinge/bearing with composite beam component and conducted fatigue analysis for flexbeam and torque tube. Extension/bending/torsional stiffness was calculated from 2D section analysis using VABS and 2D section structure analysis was applied for strain calculation. S-N curve of each composite material was generated using Wohler equation and fatigue analysis was conducted on weakness section which was decided from static structure analysis. CAMRAD II was used for load analysis and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used fatigue safe life analysis.

Evaluation of Shear Strength for Wide Beam using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 넓은 보의 전단성능 평가)

  • Jo, Eunsun;Choi, Jin Woong;Kim, Min Sook;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In this paper, an experimental evaluation of shear strength of wide beam is presented. By the experiment in paper, shear strength depending on parameter of shear reinforcement by GFRP plate on wide beam is investigated. Specimens are 7 of reinforced by GFRP plate with openings. The shear reinforcement is manufactured into plate shape with openings to ensure perfect integration with concrete. The test was performed on 7 specimens. The parameters are including number of shear reinforcement by GFRP plates and center-to-center spacing between vertical strip. We analysed the crack, failure mode, strain, shear strength of specimens. A calculation of the shear strength of reinforced wide beam with GFRP plate based on ACI 318-11. The result of the experiment shows that the GFRP plate is works successfully as shear reinforcement in the wide beam.

On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates (적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선)

  • Kim, Jun-Sik;Han, Jang-Woo;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2011
  • In this paper, an systematic approach is presented, in which the mixed variational theorem is employed to incorporate independent transverse shear stresses into a classical higher-order shear deformation theory(HSDT). The HSDT displacement field is taken to amplify the benefits of using a classical shear deformation theory such as simple and straightforward calculation and numerical efficiency. Those independent transverse shear stresses are taken from the fifth-order polynomial-based zig-zag theory where the fourth-order transverse shear strains can be obtained. The classical displacement field and independent transverse shear stresses are systematically blended via the mixed variational theorem. Resulting strain energy expressions are named as an enhanced higher-order shear deformation theory via mixed variational theorem(EHSDTM). The EHSDTM possess the same computational advantage as the classical HSDT while allowing for improved through-the-thickness stress and displacement variations via the post-processing procedure. Displacement and stress distributions obtained herein are compared to those of the classical HSDT, three-dimensional elasticity, and available data in literature.

Vibration Analysis for the L-1 Stage Bladed-disk of a LP Steam Turbine (증기터빈 저압 L-1단 블레이드-디스크 연성 진동 특성 분석)

  • Lee, Doo-Young;Bae, Yong-Chae;Kim, Hee-Soo;Lee, Yook-Ryun;Kim, Doo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • This paper studies causes of the L-1 blade damage of a low pressure turbine, which was found during the scheduled maintenance, in 500 MW fossil power plants. Many failures of turbine blades are caused by the coupling of aerodynamic forcing with bladed-disk vibration characteristics. In this study the coupled vibration characteristics of the L-1 turbine bladed-disk in a fossil power plant is shown for the purpose of identifying the root cause of the damage and confirming equipment integrity. First, analytic and experimental modal analysis for the bladed-disk at zero rpm as well as a single blade were performed and analyzed in order to verify the finite element model, and then steady stresses, natural frequencies and corresponding mode shapes, dynamic stresses were calculated for the bladed-disk under operation. Centrifugal force and steady steam force were considered in calculation of steady and dynamic stress. The proximity of modes to sources of excitation was assessed by means of an interference diagram to examine resonances. In addition, fatigue analysis was done for the dangerous modes of operation by a local strain approach. It is expected that these dynamic characteristics will be used effectively to identify the root causes of blade failures and to perform prompt maintenance.

Systems-Level Analysis of Genome-Scale In Silico Metabolic Models Using MetaFluxNet

  • Lee, Sang-Yup;Woo, Han-Min;Lee, Dong-Yup;Choi, Hyun-Seok;Kim, Tae-Yong;Yun, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.425-431
    • /
    • 2005
  • The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution resides in silico genome-scale metabolic model, In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

Curvature and Deflection of Reinforced Concrete Beams due to Shrinkgae (건조수축에 의한 철근콘크리트 보의 곡률 및 처짐)

  • 김진근;이상순;양주경;신병천
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.261-268
    • /
    • 1998
  • Deflections due to shrinkage are frequently ignored in design calculation. Especially for thin member, shrinkage often causes considerable deformations as wellas appreciable stress changes. Several methods for computing shringkage curvature have been proposed by many researchers. Some of the approximte methods widely used in the recent years are the equivalent tensile force method, Miller's method and Branson's method. These methods were, however, somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, an approximate method for computing shrinkage curvature and deflection is proposed. Curvature due to shrinkage is derived from the requirements of strain compatibility and equilibrium of a section and the age-adjusted effective modulus method. The proposed method is verified by comparison with several experimental measurements. The correlations between calculated and measured curvatures is very good.