• Title/Summary/Keyword: Stokes equations

Search Result 1,394, Processing Time 0.033 seconds

An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations (비압축성 Navier-Stokes 방정식에 대한 내재적 속도 분리 방법)

  • Kim KyounRyoun;Baek Seunr-Jin;Sung Hyunn Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • An efficient numerical method to solve the unsteady incompressible Navier-Stokes equations is developed. A fully implicit time advancement is employed to avoid the CFL(Courant-Friedrichs-Lewy) restriction, where the Crank-Nicholson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity-pressure decoupling is achieved in conjunction with the approximate factorization. Main emphasis is placed on the additional decoupling of the intermediate velocity components with only n th time step velocity The temporal second-order accuracy is Preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving the turbulent minimal channel flow unit.

  • PDF

Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations (부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산)

  • 강동진;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.755-761
    • /
    • 1987
  • Two-Dimensional incompressible laminar boundary layer with the reversed flow region is computed using the parially parabolized Navier-Stokes equations in primitive variables. The velocities and the pressure are explicity coupled in the difference equation and the resulting penta-diagonal matrix equations are solved by a streamwise marching technique. The test calculations for the trailing edge region of a finite flat plate and Howarth's linearly retarding flows demonstrate that the method is accurate, efficient and capable of predicting the reversed flow region.

CONVERGENCE OF THE NEWTON'S METHOD FOR AN OPTIMAL CONTROL PROBLEMS FOR NAVIER-STOKES EQUATIONS

  • Choi, Young-Mi;Kim, Sang-Dong;Lee, Hyung-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1079-1092
    • /
    • 2011
  • We consider the Newton's method for an direct solver of the optimal control problems of the Navier-Stokes equations. We show that the finite element solutions of the optimal control problem for Stoke equations may be chosen as the initial guess for the quadratic convergence of Newton's algorithm applied to the optimal control problem for the Navier-Stokes equations provided there are sufficiently small mesh size h and the moderate Reynold's number.

NAVIER-STOKES EQUATIONS IN BESOV SPACE B-s,(ℝn+)

  • Jin, Bum Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.771-795
    • /
    • 2013
  • In this paper we consider the Navier-Stokes equations in the half space. Our aim is to construct a mild solution for initial data in $B^{-\alpha}_{{\infty},{\infty}}(\mathbb{R}^n_+)$, 0 < ${\alpha}$ < 1. To do this, we derive the estimate of the Stokes flow with singular initial data in $B^{-\alpha}_{{\infty},q}(\mathbb{R}^n_+)$, 0 < ${\alpha}$ < 1, 1 < $q{\leq}{\infty}$.

Application of Preconditioning to Navier-Stokes Equations (예조건화 방법론의 Navier-Stokes 방정식에의 적용)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.16-26
    • /
    • 2004
  • The objective of this study is to apply preconditioning to Wavier-Stokes equations with a turbulence model. The concept of a pseudo sonic speed was adopted. Roe's FDS was used for spatial discretization, LU-SGS scheme was used for time integration. In order to test the algorithms, the low speed flows around NACA airfoils and the flows through supersonic nozzle were calculated. The algorithm developed in the present study shows good performance in the calculations of low speed viscous flows and supersonics flows.

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part II - Navier-Stokes Equations (비정렬 격자계에서 LU implicit scheme의 수렴성 및 안정성 해석: Part II - Navier-Stokes 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Navier-Stokes equations on unstructured meshes. For this purpose the characteristics of the LU scheme was initially studied for a scalar model equation. Then the analysis was extended to the Navier-Stokes equations. It was shown that the LU scheme has an inherent stiffness in the streamwise direction. This stiffness increases when the grid aspect ratio becomes high and the cell Reynolds number becomes small. It was also shown that the stiffness related to the grid aspect ratio can be effectively eliminated by performing proper subiteration. The results were validated for a flat-plate turbulent flow.

A Study on Inlet Pressure Build-up of Air-Lubricated Bearings (공기베어링에서의 선단압력발생에 관한 연구)

  • 김성국;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.127-132
    • /
    • 1999
  • The inlet pressure build-up at the leading edge of bearings which have discontinuous lubrication surface is analyzed theoretically. The analyses of Inlet pressure build-up is obtained by means of full Navier-stokes equations. Beam-warming method is used to solve navier-stokes equations. The results show that inlet pressure is above atmosphere pressure in front of leading edge of hearing.

  • PDF

REGULARITY OF 3D NAVIER-STOKES EQUATIONS WITH SPECTRAL DECOMPOSITION

  • Jeong, Hyosuk
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.583-592
    • /
    • 2016
  • In this paper, we consider the global existence of strong solutions to the incompressible Navier-Stokes equations on the cubic domain in $R^3$. While the global existence for arbitrary data remains as an important open problem, we here provide with some new observations on this matter. We in particular prove the global existence result when ${\Omega}$ is a cubic domain and initial and forcing functions are some linear combination of functions of at most two variables and the like by decomposing the spectral basis differently.

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.