• Title/Summary/Keyword: Stokes 수

Search Result 531, Processing Time 0.026 seconds

Control of Plume Interference Effects on a Missile Body Using a Porous Extension (다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.33-38
    • /
    • 2003
  • The Physics of the Plume-induced shock and separation Particularly at a high Plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with and without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG $\kappa$-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The control methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated The computational results show the main effect of the porous extension on plume-afterbody interactions is to restrain the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect rut plume interference.

Nonlinear Theory for Laboratory Wave Generation (비선형(非線形) 조파이론(造波理論))

  • Kim, Tae In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.137-150
    • /
    • 1992
  • A complete solution, exact to second-order, for wave motion forced by a hinged-wavemaker of variable-draft is presented. A solution for a piston type wavemaker is also obtained as a special case of a hinged-wavemaker. The laboratory waves generated by a plane wave board are shown to be composed of two components; viz., a Stokes second-order wave and a second-harnomic free wave which travels at a different speed. The amplitude of the second-harmonic free wave is relatively large in shallow water and decreases to less than 10% of the amplitude of the primary wave in deep water. Wavemakers with relatively deeper draft (i.e., hinged near the bottom) generate the free waves of smaller amplitude in shallow and intermediate water depths than the wavemakers with shallow draft. However, the opposite is predicted by theory in deep water.

  • PDF

A Numerical Study on the Thermal Stimulation of Continuous Moxibustion (연속 뜸의 열 자극에 대한 수치해석)

  • Yang, So-Ra;Kang, Ho-Young;Jeon, Byoung-Jin;Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.915-922
    • /
    • 2011
  • In this paper, the unsteady incompressible Navier-Stokes equation coupled with energy equation was solved in order to investigate the thermal stimulation of continuous moxibustion using a commercial code (ANSYS-Fluent). In the simulations, various periods were selected for the continuous moxibustion, which was done by burning multiple disks successively. It has been found that the depth of the effective stimulation zone increases only when the replacing temperature is equal or larger than body temperature whereas the increase rate of the effective stimulation depth decreases as the number of disc increases. Further, it has been shown that the optimal period, for which the duration time of the effective stimulation zone is maximum, exists.

Numerical Investigation, Calibration Method of the Interaction between Ieodo Ocean Research Station and Ocean Current (수치해석을 이용한 이어도 기지 구조물이 해수 유동에 미치는 영향 분석과 해류 관측 평가 및 보정방안 연구)

  • Hong, Woo-Ram;Shim, Jae-Seol;Min, In-Ki;Kim, Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.476-483
    • /
    • 2007
  • One of the main function of Ieodo Ocean Research Station is to service the information about the weather and fishing grounds condition which are collected through calibrating convection flow and ocean current around the station. However, due to the influence of the station's structure below sea level, it is difficult to obtain the exact flow data. Therefore, it is required to research on the effect of the structure and the method to evaluate and revise the observed data. In this paper, as a basic study, it deals with the algorithm that simulate the interaction between ocean current and the station structure, followed by discussions about the way to applicate the algorithm. Through 3-dimensional computational fluid dynamics analyses (using Navier-Stokes equations with K-turbulence model), the influence of the station and submerged rocks are quantitatively evaluated, and we would suggest methods how to obtain accurate flow information from the measured rough data.

Influence of a isolator in supersonic nozzle on thermal choking (초음속 노즐의 분리부가 열폐색에 미치는 영향)

  • Kim, Sangwoo;Kim, Youngcheol;Kim, Jangwoo
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with a isolator. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, unstart phenomena, fluctuations of specific thrust caused by thermal choking and effects of isolator. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. The proceeding speed of the oblique shock wave to upstream direction for the convergent-divergent nozzle with isolator is lower than that for the nozzle without isolator.

Spillway Design by Using Hydraulic and Numerical Model Experiment - Case Study of HwaBuk Multipurpose Dam (수리 및 수치모형실험을 이용한 여수로 설계 - 화북다목적댐)

  • Kim, Dae-Geun;Choi, Ji-Woong;Kim, Chang-Si;Lee, Ji-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.179-188
    • /
    • 2005
  • This study on the HwaBuk Multipurpose Dam showed that two- and three- dimensional numerical model experiments, as well as hydraulic model experiments, can be useful analysis tools for engineers. A commercially available RMA2, which solves the shallow water equations, and FLOW-3D, which solves the Reynolds averaged Navier-Stokes equations, were used to simulate the hydraulic model setup. Numerical simulation results on the following were compared with the hydraulic model results: the flow in the reservoir basin and the approaching channel; the discharge in the overflow weir; the water surface profiles in the rollway, chute, and stilling basin; and the pressure distributions in the rollway. It was shown that there is a reasonably good agreement between the numerical model and the hydraulic model for the most of computations. There were, however, some differences between the numerical simulation results and hydraulic model results for the hydraulic jump in the stilling basin because of air entrainment effect.

Nonlinear Fluid Forces on Hinged Wavemakers (힌지형 조파기에 작용하는 비선형 파력)

  • Kim, Tae-In;Rocbert T. Hudspeth
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.208-222
    • /
    • 1990
  • The nonlinear hydrodynamic pressure force and moment on hinged wavemakers of variable-draft are presented. A closed-form solution (correct to second-order) for the nonlinear wavemaker boundary value problem has been obtained by employing the Stokes perturbation expansion scheme. The physical significance of the second-order contributions to the hydrodynamic pressure moment are examined in detail. Design curves are presented which demonstrate both the magnitude of the second-order nonlinearities and the effects of the variable-draft hinge height. The second-order contributions to the total hydrodynamic force and moment consist of a time-dependent and a steady part. The sum of the first and second-order pressure force and moment show a significant increase over those predicted by linear wavemaker theory. The second-order effects are shown to vary with both relative water depth and wave amplitude. The second-order dynamic effects are relatively more important for hinged wavemakers with shallower drafts.

  • PDF

A Numerical Analysis for Estimations of Osmotic Pressure of Colloidal Suspension and Gradient Diffusion Coefficient of Particles from Permeate Flux Experiments (투과플럭스 실험으로부터 콜로이드 서스펜션의 삼투압과 입자의 구배확산계수 산출을 위한 수치적 해석)

  • 전명석
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.90-96
    • /
    • 2002
  • A novel methodology on the calculations of osmotic pressure and gradient diffusion coefficient has been provided ill the present study, by applying a succinct numerical analysis on the experimental results. Although both the osmotic pressure and the gradient diffusion coefficient represent a fundamental characteristic in related membrane filtrations such as microfiltration and ultrafiltration, neither theoretical analysis nor experiments can readily determine them. The osmotic pressure of colloidal suspension has been successfully determined from a relationship between the data of the time-dependent permeate flux, their numerical accumulations, and their numerical derivatives. It is obvious that the osmotic pressure is gradually increased, as the particle concentration increases. The thermodynamic coefficient was calculated from the numerical differentiation of the correlation equation of osmotic pressure, and the hydrodynamic coefficient was evaluated from the previously developed relation for an ordered system. Finally, the estimated gradient diffusion coefficient, which entirely depends on the particle concentration, was compared to the previous results obtained from the statistical mechanical simulations.

Multidimetional Uniform Semiclassical (WKB) Solutions for Nonseparable Problems (다차원 비분리계의 균일준고전적 해법)

  • Byung C. Eu
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.202-220
    • /
    • 1978
  • Uniform semiclassical (WKB) solutions are obtained for nonseparable systems without using a close coupling formalism and are given explicitly in terms of well known analytic functions for various physically interesting and realistic cases. They do not become singular at turning points or surfaces and when taken in their asymptotic forms, they reduce to the usual WKB solutions that could be obtained if the Stokes phenomenon was properly taken care of for solutions. In obtaining such uniform solutions, the Schroedinger equations for nonseparable systems are suitably "renormalized" to solvable "normal" forms through certain transformations. Ehrenfest's adiabatic principle plays an important guiding role for obtaining such "renormalized" uniform solutions for nonseparable systems. The eigenvalues of the Hamiltonian can be calculated from the extended Bohr-Sommerfeld quantization rules when appropriate classical trajectories are obtained. An application is made to many-electron systems and for one of the simplest examples to show the utility of the method the approximate wavefunction is calculated of the ground state helium atom.

  • PDF

A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD (CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구)

  • Seok, Jun;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.